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NOTE ON D-COMPLETENESS AND PRELINEARITY

Abstract

We prove that any set of axioms containing B, B′, and the prelinearity axiom is

D-complete, i.e. the very same formulae are provable with the rule of condensed

detachment as are with modus ponens and substitution.

1. Introduction

The rule of condensed detachment, proposed by C.A. Meredith, see e.g. [4],
is a combination of the rule of modus ponens with the minimal amount of
substitution. Informally, the rule of condensed detachment derives from the
two given formulae the most general formula deducible from these formulae
by modus ponens and substitution. Therefore, it is easy to simulate this
rule by modus ponens and substitution. The opposite direction, whether
the very same formulae are provable solely by the rule of condensed detach-
ment as are by modus ponens and substitution, so called D-completeness,
generally does not hold. In other words some substitution instances of
formulae which are provable using modus ponens and substitution are not
provable using condensed detachment. In particular not all substitution in-
stances of axioms are always derivable, because otherwise all the formulae
would be derivable.

It is well known, see e.g. [2], that if we take any nonempty set of axioms
A containing formulae only from the following list

(I) p→ p

(B) (p→ q)→ ((r → p)→ (r → q))
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(B′) (p→ q)→ ((q → r)→ (p→ r))

(C) (p→ (q → r))→ (q → (p→ r))

(K) p→ (q → p)

then not all substitution instances of formulae provable by the rule of con-
densed detachment from A are provable. Therefore such an A is not a
D-complete set of axioms.

However, if we take axioms B, B′, I, and the contraction axiom (p →
(p → q)) → (p → q) then such a set is D-complete, see [6]. We prove
the same result for the set of axioms containing B, B′, and the prelinearity
axiom P.

(P) ((p→ q)→ r)→ (((q → p)→ r)→ r)

The prelinearity axiom is a key component of mathematical fuzzy logics, see
e.g. [1]. It is interesting that this D-complete set of axioms consists only of
commonly used formulae, does not contain contraction, is not a subsystem
of intuitionistic logic, and is independent even given modus ponens and
substitution. Namely all these axioms are in their most general form—
no special substitution instance of another axiom is needed. Moreover,
as the anonymous referee pointed out this set of axioms does not contain
a formula with two positive1 and one negative occurrence of at least one
variable, cf. D-complete sets in [5]. The prelinearity axiom does have one
positive and two negative occurrences of r.

2. Preliminaries

For our purposes we understand a logic L as a set of formulae. We fix a
countably infinite set of variables Var = {p, q, r, . . .}. The set of formulae
Fml is defined in the standard way: any variable from Var is an element of
Fml , if ϕ,ψ ∈ Fml then also (ϕ→ ψ) ∈ Fml and nothing else is a member
of Fml . Hence the only connective we are interested in is the implication.
The outermost brackets in formulae are mostly omitted in this paper.

A substitution σ is a function σ : Var → Fml . We say that a substi-
tution σ is a renaming if σ : Var → Var is a bijection. The result of an

1We say that a variable p has a positive occurrence in p. If an occurrence of p is
positive (negative) in ϕ then this occurrence of p is positive (negative) in ψ → ϕ and
negative (positive) in ϕ→ ψ.
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application of a substitution σ on a formula ϕ, denoted σ(ϕ), is the for-
mula obtained by replacing variables in ϕ according to σ simultaneously.
A composition of substitutions σ : Var → Fml and δ : Var → Fml is a
substitution σ ◦ δ = { 〈p, ψ〉 | (∃ψ′)(〈p, ψ′〉 ∈ σ and ψ = δ(ψ′)) }.

A formula ψ is a variant of a formula ϕ, abbreviated by ψ ∼ ϕ, if there
is a renaming σ such that ψ = σ(ϕ), i.e. ϕ = σ−1(ψ). Moreover, we say
that a substitution σ is a variant of a substitution δ if there is a renaming
θ such that σ = δ ◦ θ, i.e. δ = σ ◦ θ−1.

A unification of a set of formulae F = {ϕ1, . . . , ϕn} is such a substi-
tution σ that σ(ϕ1) = · · · = σ(ϕn). If such a substitution exists we say
that F is unifiable. Due to the Unification Theorem of Robinson [7], for
any unifiable set of formulae F there exists a most general unifier of F .
A most general unifier (m.g.u.) σ of F is such a unification that for any
other unification δ of F , there is a substitution θ such that σ ◦ θ = δ. All
the most general unifiers, if they exist, are the same up to renaming, they
are variants of each other. Since this difference will be unimportant for us
we shall write the m.g.u. instead of a m.g.u.

2.1. Hilbert-style proof systems

A Hilbert-style proof system consists of a set of axioms A, which is just a set
of formulae, and deduction rules. The following axioms are discussed in the
paper: B, B′, I, and P. The names of axioms are based on corresponding
combinators in combinatory logic, with the exception of P which stands
for the prelinearity axiom. To simplify notation we identify the names
of axioms with the set of these axioms, e.g. BB′P is the set of axioms
consisting of B, B′, and P.

We shall use only three deduction rules: modus ponens, substitution,
and condensed detachment. The rule of modus ponens (or detachment)
derives ψ from ϕ → ψ and ϕ. The rule of substitution derives σ(ϕ) from
ϕ for any substitution σ.

Definition 2.1 (Condensed Detachment). Let us have two formulae ϕ→
ψ and χ. We produce a variant of χ called χ′, which does not have a
common variable with ϕ → ψ. If there is the m.g.u. σ of ϕ and χ′, then
produce a variant σ′ of σ such that no new variable in σ′(ϕ) occurs in
ψ. The condensed detachment of ϕ → ψ and χ is σ′(ψ). Otherwise, the
condensed detachment of ϕ→ ψ and χ is not defined.
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It is evident that the condensed detachment of ϕ→ ψ and χ is defined
uniquely up to variants (renaming).

A proof of ϕ in A is a finite sequence of formulae ψ1, . . . , ψn, where
ψn = ϕ, with the following properties. Every element is a member of A or
is derived from the preceding elements of the sequence by a deduction rule.
In this paper we study MP-proofs which have modus ponens and substi-
tution as their only deduction rules, and D-proofs which have condensed
detachment as the only deduction rule.

If there is a D-proof (MP-proof) of ϕ in A we say that ϕ is D-provable
(MP-provable) in A. Since we already pointed out that the result of an
application of condensed detachment is unique up to variants we mostly do
not mention that if ϕ is D-provable in A then also all the variants of ϕ are
D-provable in A.

To simplify notation we sometimes mix D-proofs and the formulae
they prove. Using this we can write D-proofs by the standard bracket
notation—(XY ) means the condensed detachment of X and Y , where X
and Y are axioms or derivations, but in both cases X and Y can be easily
identified with unique formulae (up to renaming). The outermost brackets
are omitted.

The following well known theorem, first explicitly shown probably in [3],
connects D-provability and MP-provability.

Theorem 2.1. Let A be a set of axioms and P be an MP-proof in A.
Then there is a D-proof P ′ in A such that every step in P is a substitution
instance of a step in P ′.

Definition 2.2. We say that a set of formulae A is D-complete if any
formula MP-provable in A is also D-provable in A.

It is important to point out that D-completeness is a property of a set
of formulae (axioms). There can be two sets of formulae which MP-prove
the very same formulae, but one of them can be D-complete and the other
is not, see [5]. Thus strictly speaking in our sense they form two different
logics if they have only the rule of condensed detachment.
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3. D-completeness of BB′P

We provide a full proof of D-completeness of BB′P, following [6] and [5].
Although a short proof could be based on the fact that (PB′)((B′B′)B)
is (p → (p → q)) → (p → (p → q)), which together with BB′I forms a
D-complete set of axioms, see [5].

The standard way to prove D-completeness is to show that ϕ → ϕ
is provable for any ϕ. Then D-completeness immediately follows from
Theorem 2.1. For any ϕ provable by modus ponens and substitution we
can prove some ψ by condensed detachment such that ϕ is a substitution
instance of ψ. Thus the condensed detachment of ϕ→ ϕ and ψ is ϕ.

Lemma 3.1. The formula p→ p is D-provable in BP and B′P.

Proof: We obtain that ((PP)P)((PB)B) and ((PP)P)((PB′)B′) are both
p→ p.

Let us note that it is not difficult to show by standard semantic ar-
guments that BB′P, consequently also BP and B′P, is an independent set
of axioms (having modus ponens and substitution as the only rules) thus
obviously none of them can be proved from the remaining ones using only
the rule of condensed detachment.

Lemma 3.2. For any formula ϕ with no repeated occurrence of variables
ϕ→ ϕ is D-provable in BB′P.

Proof: We prove the lemma by induction on the length of ϕ. If ϕ is a
variable then use Lemma 3.1. Otherwise ϕ = ψ → χ such that ψ → ψ and
χ → χ are provable by the induction hypothesis. We complete the proof
by applying these formulae on

(p→ q)→ ((r → s)→ ((q → r)→ (p→ s)))

which is (B(B′B))((B′B′)B).

Lemma 3.3. For any formula ϕ containing p with no repeated occurrence
of variables, (p→ p)→ (ϕ→ ϕ) is D-provable in BB′P.
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Proof: We again proceed by induction. For ϕ = p we get (p → p) →
(p → p) as (PB′)B. For ϕ = ψ → χ we know that p occurs only in either
ψ or χ.

If p is in ψ then by the induction hypothesis and Lemma 3.2 we know
that (p→ p)→ (ψ → ψ) and χ→ χ are provable. Using

(p→ (q → r))→ ((s→ t)→ (p→ ((r → s)→ (q → t)))) (1)

which is (B′((BB′)(BB′)))(B′((BB)B)) we obtain (p → p) → ((ψ → χ) →
(ψ → χ)).

If p is in χ then we know that ψ → ψ and (p → p) → (χ → χ) are
provable. Using

(q → r)→ ((p→ (s→ t))→ (p→ ((r → s)→ (q → t)))) (2)

which is (B′B′)((B′B′)((BB)(B′B))) we obtain (p → p) → ((ψ → χ) →
(ψ → χ)).

Lemma 3.4. For any formula ϕ containing p with no repeated occurrence
of variables except p, ϕ→ ϕ is D-provable in BB′P.

Proof: If p occurs only once in ϕ we use Lemma 3.2. Otherwise we use
the following construction. We take some maximal subformula ψ → χ of ϕ
such that ψ and χ each contain only a single occurrence of p. We know that
(p → p) → (ψ → ψ) and (p → p) → (χ → χ) are provable by Lemma 3.3.
Using

(p→ (q → r))→ ((p→ (s→ t))→ (p→ (p→ ((r → s)→ (q → t)))))
(3)

which is ((P(2))(((1)B′)B))(1) and Lemma 3.1 we obtain

(p→ p)→ ((ψ → χ)→ (ψ → χ)).

We construct (p→ p)→ (ϕ→ ϕ) by repeatedly using the previous method,
(3) and Lemma 3.1, (1), or (2). Finally, using Lemma 3.1 we obtain ϕ→ ϕ.

Theorem 3.5. For any formula ϕ, ϕ→ ϕ is D-provable in BB′P.

Proof: Let p1, . . . , pn be all the variables occurring in ϕ and ϕi, 1 ≤ i ≤ n,
be the formulae which are created from ϕ by replacing all the occurrences
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of variables other than pi by fresh variables. In ϕi the only variable which
can occur repeatedly is pi and all the other variables occur exactly once.
From Lemma 3.4 we know that all ϕi → ϕi, 1 ≤ i ≤ n, are provable.

Using the formula

(p→ p)→ ((p→ p)→ (p→ p))

which is (P(BB′))(BB) and ϕ1 → ϕ1 we obtain (ϕ1 → ϕ1) → (ϕ1 → ϕ1).
Then using condensed detachment on this formula and ϕ2 → ϕ2 we obtain
a formula ϕ1,2 → ϕ1,2 which has the same occurrences of p1 and p2 as
ϕ has. Repeating this construction for ϕ3 → ϕ3, . . . , ϕn → ϕn leads to
ϕ→ ϕ.

Corollary 3.6. Any set of formulae containing B, B′, and P is D-
complete.

Corollary 3.7. Any set of formulae in which B, B′, and P are D-provable
is D-complete.

Moreover, for sets of formulae in which B, B′, and P are not substitution
instances of more general provable formulae MP-provability is sufficient,
because D-provability follows from Theorem 2.1.
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