Yehuda Schwartz
George Tourlakis

PURE ITERATION AND SUBSTITUTION AS THE BASIS OF COMPUTABILITY ∗

Abstract

It is known that, in the presence of pairing/projection functions, (pure) iteration can simulate primitive recursion [5, 6]. This fact implies that the class of primitive recursive functions, \mathcal{PR}, can be obtained as the closure of a small set of initial functions under substitution and pure iteration—as long as the floor of the square root is included as an initial function to bootstrap the construction of pairing/projection functions—or from just the successor and predecessor functions if we add bounded search to the a priori available operations. In Section 2 of the paper we show that neither the inclusion of square root nor of bounded search are necessary to build \mathcal{PR} from the successor and predecessor. In Section 3 we show that the class of partial recursive functions, \mathcal{P}, can be obtained as the closure of \mathcal{PR} under the operation of infinite (pure) iteration.

Keywords: Iteration, primitive recursive functions, partial recursive functions, limits of function sequences.

1. Introduction

A well known approach for obtaining the class1 of primitive recursive functions, or \mathcal{PR}, is found in Grzegorczyk [2] and Péter [4], where one

∗This research was partially supported by NSERC grant No. 8250

1As is normal in non-formalised computability, the terms “set” and “class” are synonymous.
starts with the *initial set* \(I = \{ \lambda x.x, \lambda x.x + 1 \} \) and then proceeds to obtain its *closure*\(^2\) under the operations of substitution and primitive recursion. In fact, \([2]\) stratifies the construction, using instead *bounded* primitive recursion, and builds \(\mathcal{PR} \) by stages, as a hierarchy of increasingly more inclusive classes \(\mathcal{E}^n \), for \(n \geq 0 \), where each \(\mathcal{E}^n \) is the closure of \(I^n = \{ \lambda x.x, \lambda x.x + 1, \lambda xy.g_n(x, y) \} \) under substitution and bounded primitive recursion, where \(\lambda xy.g_n(x, y) \) is a version of the Ackermann function.

It has been known as part of the folklore of recursion theory that *pure iteration*, defined below, can simulate primitive recursion as long as we have pairing functions and their projections (cf. \([5, 2, 4, 6]\)). This gave rise to characterisations of \(\mathcal{PR} \) that use iteration – rather than the “full” primitive recursion – and substitution.

In \([5]\) the initial set is \(\{ \lambda x.x + 1, \lambda xy.x + y, \lambda xy.x - y, \lambda x.\lfloor \sqrt{x} \rfloor \} \), and the pure iteration is restricted to be evaluated at 0. In \([6]\) the initial set is \(\{ \lambda x.x + 1, \lambda x.x - 1 \} \) but iteration is allowed to be evaluated on any input and, moreover, bounded search is used as a primitive operation. Both approaches rest their case once they manage to construct pairing/projection functions with the provided tools.

In the present paper we retain the trivial initial set of predecessor/successor of \([6]\) but show that the bounded search need not be primitive; it is a derived operation. Thus we obtain a partial improvement, in different directions (initial function set vs. admitted operations), over the two aforementioned sources.

In Section 3 we show that infinite iteration can supplant unbounded search and thus, along with substitution and finite iteration, can define the class of all partial recursive functions.

Definition 1.1. (Substitution \([2]\)) The following construction rules are called the *rules of substitution*, where we write \(\vec{x}_n \) (or \(\vec{x} \), if \(n \) is understood or unimportant) for \(x_1, \ldots, x_n \).

(a) Substitute the \(i^{th} \) variable in \(g(\vec{x}_n) \) with \(f(\vec{y}_m) \); that is, from the functions \(\lambda \vec{x}_n.g(\vec{x}_n) \) and \(\lambda \vec{y}_m.f(\vec{y}_m) \) we can obtain the following function on \(\mathbb{N}^{n+m-1} \):

\[
\lambda x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, \vec{y}_m.g(x_1, x_2, \ldots, x_{i-1}, f(\vec{y}_m), x_{i+1}, \ldots, x_n)
\]

\(^2\)That is, the smallest set that contains \(I \) and is closed under the stated operations.
Pure Iteration and Substitution as the Basis of Computability

(b) Substitute \(x_i \) in \(g(⃗x_n) \) with 0 to obtain the function:
\[
\lambda x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n.g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)
\]

c) Interchange variables \(x_i \) and \(x_j \) in \(g(⃗x_n) \) to obtain the function:
\[
\lambda x_1, \ldots, x_{i-1}, x_j, x_{i+1}, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n.g(x_1, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{j-1}, x_i, x_{j+1}, \ldots, x_n)
\]

d) Identify two different variables \(x_i \) and \(x_j \) in \(g(⃗x_n) \) to obtain the following function on \(\mathbb{N}^{n-1} \):
\[
\lambda ⃗x_{j-1}, ⃗y, ⃗x_j+1, \ldots, ⃗x_n.g(⃗x_{i-1}, ⃗y, ⃗x_i+1, \ldots, ⃗x_{j-1}, ⃗y, ⃗x_i, ⃗y, ⃗x_j+1, \ldots, ⃗x_n)
\]

e) Introduce dummy variables \(⃗y \) to \(\lambda ⃗x_n.g(⃗x_n) \) to obtain the function:
\[
\lambda ⃗x_n. ⃗y.g(⃗x_n)
\]
where \(⃗y \) is a vector of any (fixed) length.

Definition 1.2. (The Schema of Primitive Recursion) We say that a class \(C \) of number theoretic functions is closed under \textit{primitive recursion} if whenever it contains the functions \(\lambda ⃗y.m.h(⃗y_m) \) and \(\lambda x⃗y.m.z.G(x, ⃗y_m, z) \) then it must also contain a function \(\lambda x⃗y.m.f(x, ⃗y_m) \) satisfying the following recurrence, for all \(x, ⃗y_m \):
\[
\begin{cases}
 f(0, ⃗y_m) = h(⃗y_m) \\
 f(x + 1, ⃗y_m) = G(x, ⃗y_m, f(x, ⃗y_m))
\end{cases}
\]

Remark 1.3. Notice that by rule (e) of substitution, if \(\lambda z.g(z) \in \mathcal{PR} \) then so is the function \(G = \lambda x⃗y_m.z.G(x, ⃗y_m, z) \). Therefore, given \(h = \lambda y.y \) and \(\lambda z.g(z) \), both in \(\mathcal{PR} \), we may use \(G \in \mathcal{PR} \) obtained as above to justify that the function \(f \) defined below is in \(\mathcal{PR} \), since the schema (2) can be rewritten as (1):
\[
\begin{cases}
 f(0, y) = y \\
 f(x + 1, y) = g(f(x, y))
\end{cases}
\]

This observation leads us to the next schema, called the schema of Pure Iteration.

Definition 1.4. (The Schema of Pure Iteration [5]) We say that a class \(C \) of number theoretic functions is closed under \textit{pure iteration} if whenever
it contains the function $\lambda z.g(z)$, then it must also contain a function f satisfying the following:

$$
\begin{align*}
 f(0, y) &= y \\
 f(x + 1, y) &= g(f(x, y))
\end{align*}
$$

The name pure iteration is due to the fact that $f(x, y) = g^x(y)$ (where, by definition, $g^0(y) = y$, for all y) and thus $f(x, y)$ is the “xth iteration of $g(y)$”.

Let us now define another class of functions called PI:

Definition 1.5. (The Class PI) PI is the smallest class of number theoretic functions containing $\{\lambda x.x \downarrow 1, \lambda x.x + 1\}$ and closed under the operations of substitution and pure iteration.

Now, Remark 1.3, and the known fact that $\lambda x.x \downarrow 1$ is in PR,\(^3\) imply that $\text{PI} \subseteq \text{PR}$. On the other hand, it is also known [5, 4, 6] that in the presence of pairing functions the schema of pure iteration is as strong as that of primitive recursion. Therefore, showing that PI does contain such functions is tantamount to showing that $\text{PI} = \text{PR}$.

2. The Existence of Pairing Functions in PI

The proof for the following fact can be found in [6].

Lemma 2.1. The pairing function $J(x, y) = 2^{x+y+2} + 2^{y+1}$ is in PI.

Consequently, we need only to show that PI contains the projections of J, i.e., it contains functions K and L such that $K(J(x, y)) = x$ and $L(J(x, y)) = y$, for all x and y. However, since it can be easily ascertained from the proof in [6] that the existence of such projections hinges upon the presence of the function $\lambda x.\lfloor \log_2(x) \rfloor$ in PI, we need only prove the following:

Theorem 2.2. The function $\lambda x.\lfloor \log_2(x) \rfloor$ is in PI.

\(^3\)Indeed, $0 \downarrow 1 = 0$ and $x + 1 \downarrow 1 = x$.
Proof. We shall derive, in \mathcal{PI}, a succession of functions culminating in $\left\lfloor \log_2(x) \right\rfloor$.

(a) $\lambda xy. \min(x, y) : \min(x, y) = x \div (x \div y)$
(b) $\lambda xy. \max(x, y) : \max(x, y) = x + (y \div x)$
(c) $\lambda x. 1$ and $\lambda x. 2$: The first one from the function $s = \lambda x. x + 1$ and the rules of substitution (b). The second one by composing s with $\lambda x. 1$.
(d) $\lambda x. (x \mod 2)$: Define $t(y) = 1 \div y$. Then $t^0(0) = x \mod 2$. Indeed, $t(x)$ defines the sequence of outputs $1, 0, 1, 0, ...$. But note that $t^0(0) = 0$ and $t^{x+1}(0) = 1 \div t^x(0)$, that is, $t^x(0)$ outputs the sequence $0, 1, 0, 1, 0, ...$
(e) $\lambda x. (x \mod 3)$: Define $g(x) = \min(x + 1, (2 \div x) + (2 \div x))$. Then, $g^0(0) = 0 \mod 3$
$g^1(0) = g(0) = \min(1, 4) = 1 = 1 \mod 3$
$g^2(0) = g(1) = \min(2, 2) = 2 = 2 \mod 3$
$g^3(0) = g(2) = \min(3, 3) = 0 = 0 \mod 3$
And so on. Hence, $g^x(0) = x \mod 3$.
(f) $\lambda x. \left\lfloor x/2 \right\rfloor$: Define $f(x) = x + x \mod 3$.
Let us examine the iterations of f starting from 1:
$1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 8 \rightarrow 10 \rightarrow 10 \rightarrow ...$
We can see that the value of f increases by 3 every 2 iterations. Thus, we should expect that after x iterations the value of f will have increased to about $\left\lfloor 3x/2 \right\rfloor$.
And indeed, let $x = 2k + r$ where $k = \lfloor x/2 \rfloor$ and $r = x \mod 2$.
Note that $(x + 1)/2 = k + r$ and $(x + 1) \mod 2 = 1 - r$, thus, $x + 1 = 2(k + r) + 1 - r$. Next, we show that $f^x(1) = 3k + 1 + r$: It is immediate for $x = 0$, while for $x + 1, f^{x+1}(1) = f(f^x(1)) = f(3k + 1 + r) = (3k + 1 + r) + (1 + r) = 3(k + r) + 1 + (1 - r)$.
Therefore, $f^x(1) \div x = 1 = (3k + 1 + r) - (2k + r) - 1 = k = \lfloor x/2 \rfloor$.
And so, $\lambda x. \lfloor x/2 \rfloor$ is in \mathcal{PI}.

\footnote{We will only build functions whose presence in \mathcal{PI} had not been demonstrated in [6].}
(g) \(\lambda xy \cdot x \cdot \text{sg}(y) \) : Let \(h(y) = y + \text{sg}(y) \), then \(h^2(y) \div y \) is our function.\(^5\) Indeed, if \(y = 0 \) then \(h(y) = 0 \) and \(h^2(y) \div y = 0 \); which is as it must be for emulating \(x \cdot \text{sg}(y) \) correctly. If \(y > 0 \), then \(\text{sg}(y) = 1 \), hence \(h^2(y) = x + y \), thus \(h^2(y) \div y = x \). This again tracks the expression \(x \cdot \text{sg}(y) \) well.

(h) \(\lambda xy \cdot (1 \div \text{sg}(y)) \) : From the fact that \(x \cdot (1 \div \text{sg}(y)) = x \div x \cdot \text{sg}(y) \).

(i) \(\lambda x. \text{if } \exists n(2^n = x) \text{ then } 1 \text{ else } 0 \) :

\[
G(x) = \begin{cases}
1 & \text{if } x = 1 \\
[x/2] & \text{if } x \text{ is even} \\
0 & \text{otherwise}
\end{cases}
\]

Thus \(G \in \mathcal{P} \mathcal{I} \) since \(G(x) = [x/2](1 \div \text{sg}(x(\mod \ 2))) + \min(x, 2 \div x) \).

What is \(G^2(x) ? \)

If \(x \geq 2 \) and \(x = 2^n \) for some \(n \) \(\neq x \) then after \(n \) iterations we reach 1 where we remain for the last \(x - n \) iterations. i.e.

\[
2^n \overset{n \text{ iterations}}{\longrightarrow} G \overset{2^{n-1}}{\longrightarrow} \cdots \overset{2}{\longrightarrow} G_2 \overset{1}{\longrightarrow} G_1 \overset{1}{\longrightarrow} \cdots \overset{1}{\longrightarrow}
\]

If, on the other hand, \(x = 2^n \cdot m \) for some \(m \) \(> 1 \) odd, then after \(n \) \(\neq x \) iterations we reach \(m \) and then move to 0 where we remain for the last \(x - n - 1 \) iterations. i.e.

\[
2^n \cdot m \overset{n \text{ iterations}}{\longrightarrow} G \overset{2^{n-1}}{\longrightarrow} \cdots \overset{2 \cdot m}{\longrightarrow} G_2 \overset{m}{\longrightarrow} 0 \overset{0}{\longrightarrow} 0 \overset{0}{\longrightarrow} \cdots \overset{0}{\longrightarrow}
\]

Therefore, \(G^2(x) = \text{if } \exists n(2^n = x) \text{ then } 1 \text{ else } 0 \), that is, \(\lambda x. G^2(x) \) is the characteristic function of the predicate “\(x \) is a power of 2”.

(j) \(\lambda x. [\log_2(x)] \) : Define

\[
H(y) = y + \begin{cases}
1 & \text{if } y \text{ is not a power of } 2 \\
2 & \text{otherwise}
\end{cases}
\]

that is, \(H(y) = y + \max(1, 2 \cdot G^m(y)) \), hence \(H \in \mathcal{P} \mathcal{I} \).

\(^5\) \(\text{sg}(y) = 1 \div (1 \div y) \).
Here are few iterations of H starting from 0.

$0 \rightarrow 1 \rightarrow 3 \rightarrow 4 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow \ldots$

What is the relation between $H^x(0)$ and $\lfloor \log_2(x) \rfloor$? To begin with, $\lfloor \log_2(x) \rfloor$ represents the number of integers less than or equal to x that are positive powers of 2. Now, when starting from 0, H will increase its value by 1 if its input is not a power of 2 and by 2 if it is. Thus, the $\lfloor \log_2(x) \rfloor$ powers of 2 less or equal to x contribute twice their share and we should expect $H^x(0)$ to overshoot x by about $\lfloor \log_2(x) \rfloor$, which would mean that $\lfloor \log_2(x) \rfloor$ is approximately $H^x(0) - x$.

The precise relationship between $\lfloor \log_2(x) \rfloor$ and $H^x(0)$ is uncovered by the following lemmata:

Lemma 2.3. $H^{2^n}(0) = 2^n + n$ for all n.

Proof. Induction on n.

$n = 0 : H^{2^0}(0) = 1 = 2^0 + 0$.

$n + 1 : H^{2^{n+1}}(0) = H^{2^n + 2^n}(0) \overset{\text{I.H.}}{=} H^{2^n}(2^n + n) = H^{2^n - 1}(2^n + n + 1) = H^{2^{n-2}}(2^n + n + 2) = \ldots = H^{2^{n-(2^n - n)}}(2^n + n + 2^n - n) = H^n(2^{n+1})$.

Now,

$H^n(2^{n+1}) \overset{\text{I.H.}}{=} H^{n-1}(2^{n+1} + 2) = H^{n-2}(2^{n+1} + 3) = H^{n-3}(2^{n+1} + 4) = \ldots = H(2^{n+1} + n) = 2^{n+1} + n + 1$. ■

Lemma 2.4. For all n and x, if $2^n \leq x < 2^{n+1} - 1$, then $H^x(0) = x + n$.

Proof. Induction on x. The case of $x = 1 = 2^0$ is by Lemma 2.3.

On the obvious induction hypothesis, consider $x + 1$ such that, for some n, $2^n \leq x + 1 \leq 2^{n+1} - 1$.

If $x + 1 = 2^n$, then Lemma 2.3 rests the case without the I.H.

If not — and thus $x + 1 \geq 3$ — then $H^{x+1}(0) = H(H^x(0)) \overset{\text{I.H.}}{=} H(x + n)$, the I.H. being applicable since $2^n < x + 1 \leq 2^{n+1} - n$ implies $2^n \leq x < 2^{n+1} - n$. But we have also $2^n < x + n < 2^{n+1} - n$ — the left “<” is due to $x + 1 \geq 3$, which guarantees $n > 0$. Thus $H(x + n) = (x + 1) + n$. ■

Lemma 2.5. For all n and x, if $2^n \leq x < 2^{n+1}$ then $2^n + x \leq 2^{n+1} - n - x$.

Proof. Since $2^n \leq x \leq 2^{n+1} - 1$ then $2^n + x \leq 2^x \leq 2^{n+1} + x - 2^x$. And since it can easily be proved that $x + \lfloor \log_2(x) \rfloor \leq 2^x$ for all x, we get that $2^{n+1} + x - 2^x \leq 2^{n+1} + x - n - x$.

Lemma 2.6. For all x, $\lfloor \log_2(x) \rfloor = (H_2^x(0) \div 2^x) \div x$.

Proof. It is immediate for $x = 0$. If $x \geq 1$ then there exists an n such that $2^n \leq x < 2^{n+1}$ and so, by (2.5), $2^n + x \leq 2^x \leq 2^{n+1} + x - n - x$, and by (2.4), $H_2^x(0) = 2^x + x + \lfloor \log_2(x) \rfloor$ or $\lfloor \log_2(x) \rfloor = (H_2^x(0) \div 2^x) \div x$.

These lemmata conclude the proof that $\lambda x. \lfloor \log_2(x) \rfloor \in PI$, and thus $PI = PR$.

3. Infinite Iteration and The Class PI_∞

Let us define the notion of closure under infinite iteration on total functions. Recall that a sequence x_n of numbers from \mathbb{N} converges to a, in symbols $\lim_{n \to \infty} x_n = a$, if the set $\{n : x_n \neq a\}$ is finite.

Given a sequence of total functions $\lambda x. f(n, x)$ we can define a partial function h by $h = \lambda x. \lim_{n \to \infty} f(n, x)$. Of course, $h(x)$ is undefined whenever the limit $\lim_{n \to \infty} f(n, x)$ does not exist.

Definition 3.1.[Infinite Iteration] We say that a class C of number theoretic functions is closed under infinite iteration if whenever it contains a total $\lambda y. g(y)$, then it must also contain the function $\lambda x. \lim_{x \to \infty} g^x(y)$.

Recall now that one of the ways to define the class of partial recursive functions, P, is the following:

Definition 3.2. P is the closure of $\{\lambda x. x + 1, \lambda x. x \div 1\}$ under substitution, pure iteration and unbounded search ($\tilde{\mu}$) on total functions.

The above characterisation of P is not surprising as it readily follows from $PI = PR$ of Section 2, via Kleene’s Normal Form theorem. It appears in a slightly different form in [1, 3, 6] (cf. [6], p. 116 and note that full

6$x \leq 2^x$ (for all x) implies $2^x 2^x \leq 2^{2x}$. Thus also $2^x x \leq 2^{2x}$ and hence $x + \log_2 x \leq 2^x$. But $[\log_2(x)] \leq \log_2 x$.

7By definition, $[\log_2(0)] = 0$; cf. [6].
addition and subtraction are defined by iteration from the successor and predecessor functions.)

We are reminded here of the three main versions of search: For any total \(\lambda y \vec{x}.g(y, \vec{x}) \), the expression \((\mu y)g(y, \vec{x})\) denotes \(\min\{y : g(y, \vec{x}) = 0\}\) and is undefined when the minimum does not exist. That is, it denotes the operation of unbounded search. Kleene’s unbounded search can be applied on a partial recursive \(\lambda y \vec{x}.g(y, \vec{x}) \) without prior knowledge that it is total (knowledge that, as is well known, cannot be obtained algorithmically from a program of \(g\)): \((\mu y)g(y, \vec{x})\) stands for \(\min\{y : g(y, \vec{x}) = 0 \land (\forall z < y)(g(z, \vec{x}) \text{ is defined})\}\). It is undefined if the minimum is. It is trivial that for total \(g\), \((\tilde{\mu} y) g(y, \vec{x}) = (\mu y) g(y, \vec{x})\) since the part after “\(\land\)” is true for all \(\vec{x}\). Lastly, bounded search on total functions is denoted by the expression \((\mu y < z) g(y, \vec{x})\), given by

\[
(\mu y < z) g(y, \vec{x}) = \begin{cases}
\min\{y : y < z \land g(y, \vec{x}) = 0\} & \text{if } (\exists y < z) g(y, \vec{x}) = 0 \\
\text{z otherwise}
\end{cases}
\]

It is clear that \((\tilde{\mu} y) g(y, \vec{x}) = \lim_{z \to \infty} (\mu y \leq z) g(y, \vec{x})\). Since \(\mathcal{P}I\) is closed under bounded search, this raises the question of what is the relation between two different extensions of \(\mathcal{P}I\): One, where we add closure under the operation of unbounded search on total functions (at once seen to result in \(\mathcal{P}\)), two, where we add closure under the operation of infinite iteration.

To explore this question, let us first introduce the class \(\mathcal{P}I_\infty\).

Definition 3.3. The class \(\mathcal{P}I_\infty\) is the closure of \(\{\lambda x.x + 1, \lambda x.x - 1\}\) under substitution, pure iteration and infinite iteration (on total functions).

We claim that \(\mathcal{P} = \mathcal{P}I_\infty\).

Lemma 3.4. \(\mathcal{P}I_\infty \subseteq \mathcal{P}\)

Proof. Given the above remarks we only need to show that \(\mathcal{P}\) is closed under infinite iteration.\(^8\) Let \(\lambda y.g(y) \in \mathcal{R}\), and set \(f(x, y) = g^x(y)\). Then

\[
\lim_{x \to \infty} g^x(y) = f(\tilde{x}(g^{x+1}(y) = g^x(y)), y).
\]

\(^8\)Definition 3.1, applied to the context of \(\mathcal{P}\), requires that infinite iteration be applied to functions of its subclass \(\mathcal{R}\) of total (recursive) functions.
The next lemma uses coding. Since $\mathcal{PI} = \mathcal{PR}$ we have (in \mathcal{PI}_∞) onto pairing functions,\(^9\) from which, for any fixed n, we can define primitive recursive sequence-coding, $\lambda\vec{x}_n.\langle\vec{x}_n\rangle$, and decoding, $\lambda z.(z)_i$, for $i = 0, 1, \ldots, n - 1$, functions. The ambiguity in the notation “$(z)_i$” is intentional for readability and is removed by the context (which sets the value of n). Ontoness allows the identity $\langle(\langle z \rangle)_0, \ldots, (\langle z \rangle)_{n-1}\rangle = z$, which along with the (implied by 1-1-ness) identities $(\langle \vec{x}_n \rangle)_i = x_{i+1}$, for $i = 0, \ldots, n - 1$ allow us to say things such as “if the functions g and f—of two and $n + 1$ variables respectively— satisfy, for all z,x, $g(z,\langle \vec{x}_n \rangle) = f(z,\vec{x}_n)$, then f is in \mathcal{PI}_∞ iff g is”, and also, “define the single-variable function, f, for all x,y,z by $f(\langle x, y, z \rangle) = \ldots$”.

Lemma 3.5. $\mathcal{P} \subseteq \mathcal{PI}_\infty$.

Proof. We will show that \mathcal{PI}_∞ is closed under unbounded search on total functions. So let $\lambda y \vec{x}_m.f(y,\vec{x}_m) \in \mathcal{PI}_\infty$ be total. First, since the function \vec{f}, defined by $\vec{f}(y,\langle \vec{x}_n \rangle) = f(y,\vec{x}_n)$, is in \mathcal{PI}_∞ we can assume without loss of generality that $m = 1$. For every n,x,y define the single-variable function U by:

$$U(\langle n, x, y \rangle) = \langle (n+1) \text{sg}(n) \text{sg}(f(n-1,x)), x, y + \text{sg}(n) \text{sg}(f(n-1,x)) \rangle$$

It readily follows that $U \in \mathcal{PR} \subseteq \mathcal{PI}_\infty$. By inspection, for all n and all x, we have

$$U(\langle 0, x, n \rangle) = \langle 0, x, n \rangle \quad \text{and, for } n > 0,$$

$$U(\langle n, x, n - 1 \rangle) = \begin{cases}
(\langle n+1, x, n \rangle & f(n-1,x) \neq 0 \\
(0, x, n - 1) & f(n-1,x) = 0
\end{cases}$$

Let us set $r(x,z) = \begin{cases}
0 & (\mu y < z)f(y,x) < z \\
z + 1 & (\mu y < z)f(y,x) = z
\end{cases}$

We now claim that

$$U^z(\langle 1, x, 0 \rangle) = \langle r(x,z), x, (\mu y < z)f(y,x) \rangle \quad \text{(1)}$$

Proof of (1). For $z = 0$, we know that $(\mu y < 0)f(y,x) = 0$ and so $r(x,0) = 1$ and $U^0(\langle 1, x, 0 \rangle) = \langle 1, x, 0 \rangle = \langle r(x,0), x, (\mu y < 0)f(y,x) \rangle$.

\(^9\)E.g., $\lambda xy.\lfloor(x+y)(x+y+1)/2\rfloor + x.$
For \(z+1, U^{z+1}(⟨1, x, 0⟩) = U((r(x, z), x, (μy < z)f(y, x))). \) There are three cases:

(a) \(r(x, z) = 0. \) Then \((μy < z + 1)f(y, x) = (μy < z)f(y, x) \) and \(r(x, z+1) = r(x, z). \) Thus, \(U((r(x, z), x, (μy < z)f(y, x))) = U((0, x, (μy < z)f(y, x))) = 0, x, (μy < z)f(y, x) = 0, x, (μy < z + 1)f(y, x)). \)

(b) \(r(x, z) = z + 1 \& f(z, x) = 0. \) Then \(r(x, z + 1) = 0 \) and \((μy < z + 1)f(y, x) = z. \) So, \(U((r(x, z), x, (μy < z)f(y, x))) = U((0, x, z)) = (r(x, z + 1), x, (μy < z + 1)f(y, x)). \)

(c) \(r(x, z) = z + 1 \& f(z, x) \neq 0. \) Then \(r(x, z + 1) = z + 2 \) and \((μy < z + 1)f(y, x) = z + 1. \) So, \(U((r(x, z), x, (μy < z)f(y, x))) = U((z + 1, x, z)) = (z + 2, x, z + 1) = (r(x, z + 1), x, (μy < z + 1)f(y, x)). \)

End of proof of (1).

Therefore, \(\lim_{z \to \infty} U^z(⟨1, x, 0⟩) = \big\langle \lim_{z \to \infty} r(x, z), x, \lim_{z \to \infty} (μy < z)f(y, x) \big\rangle \)

and \((\check{μ}y)f(y, x) = \big(\lim_{z \to \infty} U^z(⟨1, x, 0⟩) 3 \big) \)

References