Ewa Graczyńska

M-HYPERQUASI-IDENTITIES OF FINITE ALGEBRAS

Abstract

In [4] (see [2]) the notion of a *hypersubstitution of a given type* and the notion of a *derived variety* $D(V)$ of a given variety V of a fixed type τ were invented. Suitable *hyperequational calculus* appeared as a modification of G. Birkhoff calculus with additional rule called *hypersubstitution rule* (6). In Graczyńska E. and Schweigert D. [6] we considered further generalization to *M-hyperquasivarieties* of a given type. Basing on the result of A. Wroński [11] we modify A. Selman calculus [10] and the Gentzen-style calculus of [11] presenting a finite axiomatization of *M-hyperquasi-identities* of a finite algebra (of a finite type τ). The results were presented on the conference AAA79 and CYA25 Olomouc (Czech Republic), February 12–14, 2010.

1. **Notation**

Our nomenclature and notation is basically those of G. Birkhoff [1], E. Graczyńska and D. Schweigert [4], A. Selman [10] and A. Wroński [11]. We recall some fundamental concepts.

Definition 1.1. A type τ of an algebra $A = (A, \{f_i : i \in I\}) = (A, F)$ is a function $\tau : I \to \mathbb{N}$ from the indexing set I into the set \mathbb{N} of natural numbers, where $\tau(i) = n_i$ if f_i is an n_i-ary operation. A type τ is called *finite* if the set I is finite.

AMS Mathematical Subject Classification 2010:

Primary: 08B05, 08C15, 08B99, 08C99
We deal only with universal algebras of a given finite type $\tau : I \to \mathbb{N}$, where I is a nonempty set and \mathbb{N} denotes the set of all integers.

Hypersubstitutions of a given type τ were invented by D. Schweigert and the author in [4] (cf. [2]). Shortly speaking, they are mappings sending terms to terms by substituting variables by (the same) variables and fundamental terms of the form $f_i(x_0, ..., x_{\tau(i)-1})$ by terms of the same arieties, i.e. $\sigma(x) = x$ for any variable x, and for a given operation symbol f_i, for $i \in I$ assume that $\sigma(f_i(x_0, ..., x_{\tau(i)-1}))$ is a given term of the same arity as f_i, then σ acts on all terms of a given type τ in an inductive way:

$$\sigma(f_i(p_0, ..., p_{\tau(i)-1})) = \sigma(f_i(x_0, ..., x_{\tau(i)-1}))(\sigma(p_0), ..., \sigma(p_{\tau(i)-1})),$$

for $i \in I$, (where $f_i(x_0, ..., x_{\tau(i)-1})$ denotes a fundamental term).

Consider an algebra A and the equivalence relation \equiv_A on the set $H(\tau)$ defined by: $\sigma_1 \equiv_A \sigma_2$ in $H(\tau)$ iff the identity $\sigma_1(f_i(x_0, ..., x_{\tau(i)-1})) \approx \sigma_2(f_i(x_0, ..., x_{\tau(i)-1}))$ is satisfied in A for every $i \in I$.

The following can be easily proved by induction on the complexity of term p:

Theorem 1.2. If $\sigma_1 \equiv_A \sigma_2$ in $H(\tau)$ then for every term p of type τ the identity $\sigma_1(p) \approx \sigma_2(p)$ is satisfied in A.

It is clear that in a finite algebra A of a finite type τ there are only finitely many non-equivalent hypersubstitutions of type τ.

$H(\tau) = (H(\tau), \circ, \sigma_{id})$ denotes the monoid of all hypersubstitutions σ of a given type τ with the operation \circ of composition and the identity hypersubstitution σ_{id}. M is a submonoid of $H(\tau)$.

2. Derived algebras

Let V be a class of algebras of type τ. Derived algebras of a given type τ were defined in [4].

Definition 2.1. Let $A = (A, F)$ be an algebra in V and σ a hypersubstitution in $H(\tau)$. Then the algebra $B = (A, (F)^\sigma)$ is a derived algebra of A, with the same universe A and the set $(F)^\sigma$ of all derived operations of F by σ. B is then denoted as A^σ.

$D(V)$ denotes the class of all derived algebras of type τ of all algebras of V.

Definition 2.2. A variety V is called *solid* if and only if $D(V) \subseteq V$.

Let us note, that for a finite algebra A of a finite type τ, the class $D(A)$ is finite.

2.1. Quasi-identities and quasivarieties of algebras

We recall the notion invented by A. I. Mal’cev from [8]:

Definition 2.3. A *quasi-identity* e is an implication of the form:

$$ (1.2.1) \ (t_0 \approx s_0) \land ... \land (t_{n-1} \approx s_{n-1}) \rightarrow (t_n \approx s_n). $$

where $t_i \approx s_i$ are k-ary identities of a given type, for $i = 0, ..., n$.

A quasi-identity above is *satisfied in an algebra* A of a given type if and only if the following implication is satisfied in A:

$$(t_0 \approx s_0) \land ... \land (t_{n-1} \approx s_{n-1}) \rightarrow (t_n \approx s_n).$$

A quasi-identity e is *satisfied in a class* V of algebras of a given type, if and only if it is satisfied in all algebras A belonging to V.

A hyperquasi-identity e (of a type τ) is the same as quasi-identity (of type τ). The difference between quasi-identities and hyperquasi-identities is in satisfaction. Similarly as in [5] we accept the following modification of the satisfaction of a quasi-identity to the notion of a *hypsatisfaction* in the following way:

Definition 2.4. A hyperquasi-identity e is *satisfied* (is hyper-satisfied, holds) in an algebra A if and only if the following implication holds: if σ is a hypersubstitution of type τ and the elements $a_1, ..., a_k \in A$ satisfy the equalities $\sigma(t_i)(a_1, ..., a_k) = \sigma(s_i)(a_1, ..., a_k)$ in A, for $i \in \{0, 1, ..., k - 1\}$, then the equality $\sigma(t_n)(a_1, ..., a_k) = \sigma(s_n)(a_1, ..., a_k)$ holds in A. In symbols $A \models_{H} e$.

If e is satisfied (as a hyperquasi-identity) in a class V of algebras of type τ, then we write $V \models_{H} e$.

**
3. Solid quasivarieties

A reformulation of the notion of quasivariety invented by A. I. Mal’cev in [8], p. 210 to the notion of hyperquasivariety of a given type τ was considered by D. Schweigert and the author in [5] in a natural way:

Definition 3.1. A class K of algebras of type τ is called a hyperquasivariety if there is a set Σ of quasi-identities of type τ such that K consists exactly of those algebras of type τ that hypersatisfy all the quasi-identities of Σ.

Definition 3.2. A quasivariety V is called solid if and only if $D(V) \subseteq V$.

It was proved in [5] that the notion of hyperquasivariety and solid quasivariety coincides. We presented there some examples and theorems of Mal’cev type for solid quasivarieties.

Definition 3.3. A hyperquasi-identity e is M-hyper-satisfied (holds) in an algebra A if and only if the following implication is satisfied: If σ is a hypersubstitution of M and the elements $a_1,\ldots,a_n \in A$ satisfy the equalities $\sigma(t_i)(a_1,\ldots,a_k) = \sigma(s_i)(a_1,\ldots,a_k)$ in A, for $i = 0,1,\ldots,n-1$, then the equality $\sigma(t_n)(a_1,\ldots,a_k) = \sigma(s_n)(a_1,\ldots,a_k)$ holds in A. We say then, that e is an M-hyperquasi-identity of A and write:

$$A \models^M_{H} (t_0 \approx s_0) \land \ldots \land (t_{n-1} \approx s_{n-1}) \rightarrow (t_n \approx s_n).$$

$MHQId(A)$ denotes the set of all hyperquasi-identities satisfied in A (as M-hyperquasi-identities).

Following [11] in the sequel we use the notation:

$$\Delta \rightarrow \alpha,$$

for a set $\Delta = \{p_i \approx q_i : 0 \leq i \leq n - 1\}$ and $\alpha = p_n \approx q_n$ instead of the quasi-identity: $p_0 \approx q_0 \land \ldots \land p_{n-1} \approx q_{n-1} \rightarrow p_n \approx q_n$.

We adopt the convention, that an identity $p \approx q$ may be regarded as a quasi-identity e of the form $\emptyset \rightarrow p \approx q$, where \emptyset denotes the empty set. A hyperquasi-identity e is M-hyper-satisfied (holds) in a class V if and only if it is M-hypersatisfied in any algebra of V. We write then: $V \models^M_{H} e$.
We modify Selman calculus [10] by adding a new rule:

(4) an M-hypersubstitution rule

$$\frac{(t_0 \approx s_0) \land \ldots \land (t_{n-1} \approx s_{n-1}) \rightarrow (t_n \approx s_n)}{\sigma(t_0) \approx \sigma(s_0) \land \ldots \land \sigma(t_{n-1}) \approx \sigma(s_{n-1}) \rightarrow \sigma(t_n) \approx \sigma(s_n)},$$

or in an equivalent notation:

(4) an M-hypersubstitution rule

$$\frac{\{\gamma_0, \ldots, \gamma_{n-1}\} \rightarrow \beta}{\sigma(\gamma_0), \ldots, \sigma(\gamma_{n-1}) \rightarrow \sigma(\beta)},$$

where $\sigma \in \{\sigma_j : j = 1, \ldots, m\}$ for any hypersubstitutions $\sigma_1, \ldots, \sigma_m \in M$ of $H(\tau)$ such that $M/\equiv_A = \{[\sigma_1] \equiv_A, \ldots, [\sigma_m] \equiv_A\} \subseteq H(\tau)/\equiv_A$. We assume that σ_j are pairwise nonequivalent.

In the sequel we will use the symbol Γ for a set $\{\gamma_0, \ldots, \gamma_{n-1}\}$ and the set $\{\sigma(\gamma_0), \ldots, \sigma(\gamma_{n-1})\}$ will be denoted by $\sigma(\Gamma)$, for $\sigma \in M$.

We modify the rule (4) to the following rule:

$$(4)_A \quad \frac{\Gamma \rightarrow \delta}{\sigma_j[\Gamma] \rightarrow \sigma_j[\delta]}, \text{ for every } j = 1, 2, \ldots, m.$$
consists exactly of those algebras of type τ that M-hypersatisfy all the hyperquasi-identities of Σ.

We accept the following definition:

Definition 4.2. Let QV be a quasivariety, then QV is M-solid if and only if every M-derived algebra A^σ belongs to QV, for every algebra A in QV and σ in M, i.e.

$$D_M(QV) \subseteq QV$$

The following was proved in [6]:

Theorem 4.3. A (quasi)variety K of algebras of a given type is an M-hyper(quasi)variety if and only if it is M-solid.

In [6] we presented some Mal’cev type theorems for M-hyperquasivarieties.

Let us recall from [6] that:

Remark. $MHQId(A) = QId(D_M(A))$

5. **Gentzen-style calculus**

We use the notation of [11], p. 74. For every $n = 1, 2, \ldots$ we accept the rule G_n invented by A. Wroński:

$$(G_n) \quad \frac{x_0 \approx x_1, \Gamma \rightarrow \delta, \ldots, x_0 \approx x_n, \Gamma \rightarrow \delta, x_{n-1} \approx x_n, \Gamma \rightarrow \delta}{\Gamma \rightarrow \delta}.$$

For every $n = 1, 2, \ldots$ let G_n be Gentzen-style calculus invented in [11] by adding the rule G_n to the calculus of A. Selman [10].

We modify Gentzen-style axiomatization $G_n(A)$ of quasi-identities A. Wroński to the system $MHG_n(A)$ resulting from Selman calculus by adding the rules G_n and (4)$_A$ and all the axioms (1), (2), (3) to obtain a finite axiomatization of all M-hyperquasi-identities of the algebra A. In fact we could agree to call this axiomatization as hyper Gentzen-style, as we use an additional inference rule of hypersubstitution.

Let n be a natural number and $F(x_1, \ldots, x_n)$ be absolutely free algebra of terms of type τ in variables x_1, \ldots, x_n. Let A be an algebra of type τ whose number of elements does not exceed n. The quotient algebra
\(F(x_1, \ldots, x_n)/MHId(A) \cong F(x_1, \ldots, x_n)/Id(D_M(A)) \) is an \(n \)-generated free algebra in the variety \(HSPD_M(A) \). For every term \(t \in F(x_1, \ldots, x_n) \) we pick a term \(r(t) \in [t]MHId(A) \) and call it the representative of \(t \). Thus whenever \(A \models M_{\tau} t_1 \approx t_2 \) and \(Var(t_1, t_2) \subseteq \{ x_1, \ldots, x_n \} \) then \(t_1 \) and \(t_2 \) must have the same representative i.e. \(r(t_1) \approx r(t_2) \).

In order to axiomatize the \(M \)-hyperquasi-identities of \(A \) we adopt similar axioms (1), (2) and (3) as in [11], p. 74, 75:

1. For every term \(t \) of type \(\tau \) in variables \(x_1, \ldots, x_n \), the identity \(t \approx r(t) \) can be derived from axioms (1), (2) by Birkhoff calculus.
2. For all terms \(t_1, t_2 \) of type \(\tau \) in variables \(x_1, \ldots, x_n \), if \(A \models M_{\tau} t_1 \approx t_2 \) then \(A \models M_{\tau} \sigma(t_1) \approx \sigma(t_2) \) and all the identities \(\sigma(t_1) \approx \sigma(t_2) \) can be derived from axioms (1), (2) by Birkhoff calculus, for every \(\sigma \in M \subseteq H(\tau) \).

Similarly as in A. Wroński [11], in addition to (1) and (2) we adopt as axioms all quasi-identities of the form:

3. \(\Gamma \rightarrow \delta \) such that \(A \models M_{\tau} \Gamma \rightarrow \delta \) and each member of \(\Gamma \cup \{ \delta \} \) is an identity of the form \(r(t_1) \approx r(t_2) \) where \(t_1, t_2 \) are terms of type \(\tau \) in variables \(x_1, \ldots, x_n \).

It is clear from [11], p. 75 that the cardinality of axioms (1)–(3) is finite. Moreover, for a finite algebra \(A \) of a finite type there are only finitely many nonequivalent hypersubstitutions of type \(\tau \). For a given monoid \(M \subseteq H(\tau) \) we choose for one representative from \(M \) in every equivalence class by the relation \(\equiv_A \) in \(M \). Assume that \(\sigma_1, \ldots, \sigma_m \) are all representatives, where \(\sigma_1 = \sigma_{id} \). Therefore the cardinality of \((4)_A \) is also finite.

The following observation is similar to (iii) of [11], p. 75:

(iii) For every quasi-identity \(\Gamma \rightarrow \delta \) of type \(\tau \) in variables \(x_1, \ldots, x_n \), if \(A \models M_{\tau} \Gamma \rightarrow \delta \) then the quasi-identity \(\sigma(\Gamma) \rightarrow \sigma(\delta) \) can be derived from axioms (1), (2) and (3) by Selman calculus, for every \(\sigma \in M \).

Proof. For every \(\sigma \in M \) the quasi-identities of the form \(\sigma(\Gamma) \rightarrow \sigma(\delta) \) we get that \(A \models M_{\tau} \sigma(\Gamma) \rightarrow \sigma(\delta) \) by the definition of \(M \)-hyperquasi-satisfaction.
From the other hand they are consequences of quasi-identities of the form \(\Gamma \rightarrow \delta \) by the inference rules (1), (2) and (3) by Selman calculus, in the following way: assume \(\sigma \equiv A \sigma_j \) in \(M \), for some \(j \): \(1 \leq j \leq m \). Then \(A \models_M \sigma_j(\Gamma) \rightarrow \sigma_j(\delta) \), for \(0 \leq j \leq m \). By Selman calculus to each of such quasi-identity one may adopt the proof of (iii) of [11], p. 75 in order to obtain that it can be derived from axioms (1), (2) and (3) as follows:

First, using (1), (2) and Selman calculus we derive \(\sigma_j(\Gamma) \rightarrow r(\sigma_j(\Gamma)) \) and \(r(\sigma_j(\delta)) \rightarrow \sigma_j(\delta) \). We also have \(r(\sigma_j(\Gamma)) \rightarrow r(\sigma_j(\delta)) \) by (3). Thus the result \(\sigma_j(\Gamma) \rightarrow \sigma_j(\delta) \) can be achieved by cut and the desired result by Selman calculus. □

We have the following slight modification of Theorem 2 of A. Wroński [11], p.77:

Theorem 5.1. \(A \models_M \Gamma \rightarrow \delta \) iff \(\mathcal{MHG}_n(A) \) proves \(\Gamma \rightarrow \delta \)

iff \(\mathcal{MHG}_n(A) \) proves \(\sigma_j(\Gamma) \rightarrow \sigma_j(\delta) \), for \(j = 1, \ldots, m \)

iff \(\mathcal{MHG}_n(A) \) proves \(\sigma(\Gamma) \rightarrow \sigma(\delta) \), for every \(\sigma \in M \).

Proof. The part “if” follows from the fact that if \(\mathcal{MHG}_n(A) \) proves \(\Gamma \rightarrow \sigma \) then it proves \(\sigma_j(\Gamma) \rightarrow \sigma_j(\delta) \) for all \(1 \leq j \leq m \) by the inference rule (4)_A. Moreover, each quasi-identity \(\sigma(\Gamma) \rightarrow \sigma(\delta) \), for \(\sigma \in M \) is a consequence of quasi-identities of the form \(\sigma_j(\Gamma) \rightarrow \sigma_j(\delta) \) for some \(1 \leq j \leq m \) by Selman calculus. We conclude that every implication \(\sigma(\Gamma) \rightarrow \sigma(\delta) \) is provable from \(\mathcal{MHG}_n(A) \), for \(\sigma \in M \). Thus \(A \models_M \Gamma \rightarrow \sigma \), as all the rules are admissible in \(A \).

To prove the “only if” part suppose that \(\Gamma \rightarrow \delta \) is a quasi-identity in variables \(x_1, \ldots, x_k \), for \(k \in \mathbb{N} \), such that \(A \models_M \Gamma \rightarrow \delta \), thus \(A \models \Gamma \rightarrow \delta \) by the definition of satisfaction \(\models_M \) therefore by a similar argument as in the proof of Theorem 2 of [11], p. 77 we conclude that \(\Gamma \rightarrow \delta \) is provable by the calculus \(\mathcal{MHG}_n(A) \) (without an application of the rule (4)_A). Therefore every implication of the form \(\sigma_j(\Gamma) \rightarrow \sigma_j(\delta) \) is provable by the calculus \(\mathcal{MHG}_n(A) \), for all \(0 \leq j \leq m \). In consequence every implication of the form \(\sigma(\Gamma) \rightarrow \sigma(\delta) \) is provable by the calculus \(\mathcal{MHG}_n(A) \), for all \(\sigma \in M \), by the similar argument as in the part “if”. □

Remark. Let us note that the calculus \(\mathcal{MHG}_n(A) \) reduces to the calculus \(G_n(A) \) of A. Wroński [11] for the trivial monoid \(M \).
The next Theorem follows from Theorem above by a finite application of hypersubstitution rule \((4)_A\) to each axiom obtained in Theorem 2. Then the rule \((4)_A\) may be omitted as the resulting set is already closed under that rule. This fact follows from an observation that the rule \((4)_A\) commutes with all the rules of Selman calculus and the rule \((G_n)\). Therefore the closure of a set of axioms closed under \((4)_A\) under Selman and \((G_n)\) inference rules is already closed under that rule.

The following is a slight modification of Theorem 1 of A. Wroński [11], p. 74:

Theorem 5.2. For every \(n = 1, 2, \ldots\) the calculus \(G_n\) allows for a finite axiomatization of all \(M\)-hyperquasi-identities of every algebra of a finite type whose number of elements does not exceed \(n\).

References

Opole University of Technology, Institute of Mathematics
ul. Luboszycka 3, 45-036 Opole, Poland
e-mail: egracz@po.opole.pl
http://www.egracz.po.opole.pl/