Marek Nasieniewski
Andrzej Pietruszczak

NEW AXIOMATIZATIONS OF THE WEAKEST REGULAR MODAL LOGIC DEFINING JASKOWSKI’S LOGIC D_2

Abstract
In [3] the weakest regular modal logic $rS5^M$ defining D_2 was indicated. The logic $rS5^M$ was defined by means of a specific rule of inference (RM_2): $\Box\Box A/\Diamond A$. This rule was used in [5] to define $S5^M$ – the weakest normal modal logic defining D_2. In [1], [2] axiomatizations of $S5^M$ without this rule were given. In the present paper we axiomatize also $rS5^M$ without the rule (RM_2). The present paper is a continuation of [3].

Key words: the discussive logic D_2, regular modal logics for D_2.

1. Introduction

Let For_m be the set of all formulae of modal propositional language, while For_d be the set of all formulae of the discussive language.¹

Jaśkowski used notation ‘D_2’ referring to a logic, i.e. a set of formulas. This set is defined as follows:

$$D_2 := \{ A \in For_d : (\Diamond A^*) \in S5 \},$$

where $(\cdot)^*$ is a translation of discussive formulae into the modal language, i.e. $(\cdot)^*$ is a function from For_d into For_m.

¹In the appendix of [3] we recall some chosen facts concerning modal logic. Also the function $(\cdot)^*$, the discussive language and other notions used in the present paper are defined there.
Definition 1.1. Let \(L \) be any modal logic.

(i) We say that \(L \) defines \(D_2 \) iff \(D_2 = \{ A \in \text{For}^d : \square \diamond A \in L \} \).

(ii) Let \(S5_\diamond \) be the set of all modal logics which have the same theses beginning with ‘\(\diamond \)' as \(S5 \), i.e., \(L \in S5_\diamond \) iff \(\forall A \in \text{For}_m (\square \diamond A \in L \iff \square \diamond A \in S5) \).

(iii) Let \(RS5_\diamond \) (resp. \(NS5_\diamond \)) be the set of all regular (resp. normal) logics from \(S5_\diamond \).

Fact 1.1 ([3]). For any congruent (classical) modal logic \(L \): \(L \) defines \(D_2 \) iff \(L \in S5_\diamond \).

In [5] the logic \(S5^M \) is defined as the smallest normal logic containing

\[
\diamond (p \rightarrow p)^2, \quad (P) \\
\diamond \square (\diamond \square p \rightarrow \square p), \quad (ML5) \\
\diamond \square (\square p \rightarrow p), \quad (MLT)
\]

and closed under the following rule:

if \(\square \diamond A \in S5^M \) then \(\square A \in S5^M \). \((RM^2_1)\)

Fact 1.2 ([5]). \(S5^M \) is the smallest logic in \(NS5_\diamond \).

In [3] it was observed that one can drop two out of the three axioms of the original formulation of \(S5^M \) (cf. Fact 1.4ii). Besides, in [1], [2] it was proved that one can define the logic \(S5^M \) without the rule \((RM^2_1) \).

In the present paper we prove that \(S5^M \) has other axiomatizations (for the proof of Fact 1.3iv see p. 49).

As it is well known, in all regular logics (and so in normal ones) the formula \((P) \) is equivalent to the following formula:

\[\square p \rightarrow \diamond p \quad (D) \]

The smallest normal logic containing \((D) \) (equivalently \((P) \)) is denoted by ‘\(KD \)' or simply by ‘\(D \)'. Thus, of course \(D \subseteq S5^M \).
FACT 1.3 ([1], [2], [3]). SSM is the smallest normal logic which:

(i) contains (MLT) and “semi-4”

\[\Box p \to \Diamond \Box \Box p \] \hspace{1cm} (4e)

i.e. SSM = K4(MLT).\(^3\)

(ii) contains (4e) and the converse of (5)

\[\Box p \to \Diamond \Box p \] \hspace{1cm} (5e)

i.e. SSM = K4,5c;

(iii) contains (MLT) and is closed under (RM\(_2\)1);

(iv) contains (5c) and is closed under (RM\(_2\)1).

In [3] a regular version of the logic SSM was considered. It was proved that while defining the logic D\(_2\) one can use weaker modal logic than SSM.

DEFINITION 1.2. Let rSSM be the smallest regular logic which contains (MLT) and is closed under the rule (RM\(_2\)1).

FACT 1.4 ([3]).

(i) The logic rSSM is not normal. Thus, rSSM \(\subseteq\) SSM.

(ii) (P), (D), (ML5) \(\in\) rSSM.

(iii) rSSM is the smallest logic in RS5\(_5\).

(iv) rSSM is the smallest regular logic defining D\(_2\).

COROLLARY 1.1. For any modal logic L: if rSSM \(\subseteq\) L \(\subseteq\) S5, then L \(\in\) S5\(_5\).

Besides, we have the upward analogon of the result from Fact 1.4iv.

FACT 1.5 ([3]). If L is a regular logic defining D\(_2\), then L \(\subseteq\) S5.

\(^3\)To simplify naming of normal (resp. regular) logics we use the Lemmon code KX\(_1\) \ldots X\(_n\) (resp. CX\(_1\) \ldots X\(_n\)) to denote the smallest normal (resp. regular) logic containing formulae (X\(_1\)), \ldots, (X\(_n\)) (cf. e.g. appendices in [3], [4]).
2. New facts about the logic $\text{rS}5^M$

Firstly, we show that the rule (R^M_2) has not to be a primitive rule of $\text{rS}5^M$.

Lemma 2.1. Every regular logic containing (4_s) is closed under (R^M_2).

Proof: We have the following proof:

1. $\Diamond\Diamond A$ \hspace{1cm} assumption
2. $\Diamond\Diamond A \to (T \to \Diamond\Diamond A)$ \hspace{1cm} PL
3. $T \to \Diamond\Diamond A$ \hspace{1cm} 1, 2 and modus ponens
4. $\Box T \to \Box\Diamond\Diamond A$ \hspace{1cm} 3 and the rule of monotonicity
5. $\Box\Diamond\Diamond A \to \Diamond A$ \hspace{1cm} (4_s) and laws of regular logics
6. $\Box T \to \Diamond A$ \hspace{1cm} PL, 4 and 5
7. $\Diamond(T \to A)$ \hspace{1cm} 6, regularity and PL
8. $(T \to A) \to \Diamond A$ \hspace{1cm} PL
9. $\Diamond(T \to A) \to \Diamond A$ \hspace{1cm} 8 and monotonicity
10. $\Diamond A$ \hspace{1cm} (MP), 7 and 9

Secondly, we show (cf. [2], p. 61) that

Lemma 2.2. (MLT) is a thesis of any regular logic containing the following formula

$$\Box\Diamond p \to \Diamond p$$

So (MLT) belongs to any regular logic containing (5_5).

Proof: Consider the following inference:

1. $\neg \Diamond\Box(\Box p \to p) \to \Box\Diamond(\Box p \land \neg p)$ \hspace{1cm} PL and laws of regular logics
2. $\Box(\Box p \land \neg p) \to \Diamond\Box p \land \Diamond\neg p$ \hspace{1cm} PL and laws of regular logics
3. $\Box\Diamond(\Box p \land \neg p) \to \Box(\Box\Box p \land \Diamond\neg p)$ \hspace{1cm} 2 and monotonicity
4. $\Box(\Box\Box p \land \Diamond\neg p) \to \neg \Box(\Box\Box p \to \Box p)$ \hspace{1cm} PL and laws of regular logics
5. $\neg \Box\Box(\Box p \to p) \to \neg \Box(\Box\Box p \to \Box p)$ \hspace{1cm} 1, 3, 4 and PL
6. $\Diamond\Box p \to \Box p$ \hspace{1cm} 5 and PL
7. $\Box\Diamond\Box p \to \Diamond\Box p$ \hspace{1cm} (5_5): $p/\Box p$
8. $\Box\Box(\Box p \to \Diamond\Box p) \to \Diamond(\Box\Box p \to \Box p)$ \hspace{1cm} laws of regular logics
9. $\Diamond\Box(\Box p \to p)$ \hspace{1cm} 7, 8, 6 and $2\times$ modus ponens

\footnote{For the case of normal logics the proof of Lemma 2.1 can be significantly simplified by the usage of Gödel’s rule (see [2], p. 62).}
Thirdly, in [3], p. 201 it was proved that:

Lemma 2.3 ([3]).

(i) \((5_c) \in rS5^M\).

(ii) \((4_s)\) belongs to any regular logic which contains \((5_c)\) and is closed under \((RM^2_1)\). So \((4_s) \in rS5^M\).

Theorem 2.1. \(rS5^M\) is the smallest regular logic which:

(i) contains \((4_s)\) and \((MLT)\), i.e. \(rS5^M = C4_s(MLT)\),

(ii) contains \((4_s)\) and \((5_c)\), i.e. \(rS5^M = C4_s5_c\),

(iii) contains \((5_c)\) and is closed under \((RM^2_1)\).

Proof: By Lemma 2.1, \(C4_s(MLT)\) is closed under \((RM^2_1)\). Hence we have \(rS5^M \subseteq C4_s(MLT)\). By Lemma 2.2, \(C4_s(MLT) \subseteq C4_s5_c\). By Lemma 2.3, \(C4_s5_c \subseteq rS5^M\). Thus, we have

\[rS5^M = C4_s(MLT) = C4_s5_c. \]

By Lemma 2.3ii, we have that \(C4_s5_c\) is contained in the smallest regular logic which contains \((5_c)\) and is closed under \((RM^2_1)\). By Lemma 2.1, \(C4_s5_c\) is closed under \((RM^2_1)\). Therefore we have also the reverse inclusion. ⊣

Proof of Fact 1.3iv: By Fact 1.3ii, \(S5^M = K4_s5_c\). By Lemma 2.3ii, we have that \(K4_s5_c\) is contained in the smallest normal logic which contains \((5_c)\) and is closed under \((RM^2_1)\). By Lemma 2.1, \(K4_s5_c\) is closed under \((RM^2_1)\). Thus we have also the reverse inclusion. ⊣

References

