Dolph Ulrich

D-COMPLETE AXIOMS FOR THE CLASSICAL EQUIVALENTIAL CALCULUS

Abstract

Virtually all previously known axiom sets for the classical equivalential calculus, \(\text{EQ} \), are \(\text{D} \)-incomplete: not all theorems derivable by substitution and detachment can be derived using the rule \(\text{D} \) of condensed detachment alone. The only exception known to the author is Wajsberg’s base \(\{ \text{EE}p\text{E}qr\text{E}qp, \text{EE}p\text{ppp} \} \). This axiom set, albeit inorganic since one of its members contains a theorem of \(\text{EQ} \) as a proper subformula, is here shown to be \(\text{D} \)-complete. \(\text{D} \)-complete single axioms for \(\text{EQ} \) are then constructed, culminating with \(\text{EE}pq\text{EE}rq\text{EsEsEsEsEpr} \) which has the distinction of being both \(\text{D} \)-complete and organic.

1. \(\text{D} \)-completeness and \(\text{D} \)-incompleteness

The well-formed formulas of the classical equivalential calculus are built in the usual way from a binary connective \(E \) and denumerably many sentence letters \(p, q, r, \ldots, p_1, p_2, \ldots \): each sentence letter is well-formed, and if \(\alpha \) and \(\beta \) are well-formed, so is \(E\alpha\beta \).

Let \(\text{EQ} \) be the set of such formulas in which each sentence letter occurring occurs an even number of times. The members of \(\text{EQ} \) are, as first noted by Leśniewski [7], exactly the formulas that are tautologies of the standard two-valued truth-table for material equivalence.

For each set \(A \) of formulas, let the \(A \)-theorems be the formulas derivable from members of \(A \) using the rules of substitution and detachment (that is, \textit{modus ponens}). A subset \(A \) of \(\text{EQ} \) is a \textit{complete axiom set}, or \textit{base}, for \(\text{EQ} \), if and only if the set of \(A \)-theorems is exactly \(\text{EQ} \).
C. A. Meredith’s rule **D** of condensed detachment, which combines detachment with a small amount of substitution, has been a tool of choice in the investigation of sentential calculi such as **EQ** since its introduction in [14]. Detailed presentations of rule **D** may be found in, for example, [2], [4], and [6]. Briefly, let $E\alpha\beta$ (the major premise) and γ (the minor premise) be any pair of formulas. Let γ' be an alphabetic variant of γ containing no letters occurring in $E\alpha\beta$. If there exists a substitution s of formulas for the letters occurring in α and γ' for which $s(\alpha) = s(\gamma')$, α and γ' are said to be **unifiable**, and s is called a **unifier** for them. When α and γ' are unifiable, there is, by the Unification Theorem of [15], always a most general unifier for the two, that is, a substitution s of formulas for the letters occurring in α and γ' such that for any other substitution s' unifying α and γ', $s'(\alpha)$ is a substitution instance of $s(\alpha)$. By trivial letter-for-letter alterations, s can always be turned into a β-acceptable most general unifier s^* for α and γ', that is, a most general unifier for α and γ' for which no sentence letters occurring in $s^*(\alpha)$ occur in β but not α. Rule **D** can be formulated as follows:

Rule D. Premises: Any two formulas $E\alpha\beta$ and γ for which α and γ have a common substitution instance. **Conclusion:** any alphabetic variant of $s^*(\beta)$ where γ' is any alphabetic variant of γ containing no sentence letters in common with $E\alpha\beta$ and s^* is any β-acceptable most general unifier for α and γ'.

Following Hindley and D. Meredith [4], for each set \mathbf{A} of formulas, let the **condensed** \mathbf{A}-**theorems** be the formulas **D**-derivable from those in \mathbf{A}, that is, those derivable by **D** alone. Clearly every condensed \mathbf{A}-theorem is an \mathbf{A}-theorem, and though the converse is not true in general, we do have in its place a well known and fundamental lemma:

Lemma 1. (Kalman [6]) For each set \mathbf{A} of formulas, every \mathbf{A}-theorem is a substitution instance of at least one condensed \mathbf{A}-theorem.

If every \mathbf{A}-theorem is a condensed \mathbf{A}-theorem—that is, if every formula deducible from \mathbf{A} by substitution and detachment is also deducible by \mathbf{D} alone—\mathbf{A} is (cf. [12]) **D**-**complete**. Otherwise, \mathbf{A} is **D**-**incomplete**.

The first \mathbf{D}-completeness and \mathbf{D}-incompleteness results were given by Hindley and D. Meredith [4], who employ the binary connective \mathbf{C} rather than \mathbf{E}. With $\mathbf{B} = CCpqCCrpCrq$, $\mathbf{C} = CCpqCqrCqp$, $\mathbf{K} = CpCqp$, \mathbf{W}
= CCpCpqCpq, and I = Cpp, they showed that the axiom sets \{B, C, K, CCCpqpp\} and \{B, C, K, W\} for classical and intuitionistic implication, respectively-and, indeed, all extensions of the latter-are D-complete, while Meredith's \cite{11} sets \{B, C, I\} and \{B, C, K\} are D-incomplete. Meyer and Bunder \cite{12} subsequently established D-completeness for all extensions of the bases \{B, CCpqCCqrCpr, I, W\} and (cf. Mints and Tammet \cite{13}) \{B, C, I, W\} for the relevance logics T_\rightarrow and R_\rightarrow. More recently, the latter results have been extended by Megill and Bunder \cite{10} to a family of still weaker axiom sets.

2. Axiom Sets for Classical Equivalence

Following Belnap \cite{1}, a formula has the two-property just in case each sentence letter occurring in it occurs exactly twice. It is a striking fact that virtually all previously reported axiom sets for EQ consist exclusively of axioms with the two-property, from Leśniewski's \cite{7} original axiom set \{EEpqErpEqr, EEpEqrEEpqr\} through numerous additional bases reported in \cite{8} and \cite{5} to the fourteen shortest possible single axioms from various hands listed in \cite{17} (and named as in \cite{3}):

\begin{align*}
\text{YQL. } EEpqEEqErp & \quad \text{YQF. } EEpqEEprEqr \\
\text{UM. } EEEpqrEEqErp & \quad \text{XGF. } EpEEqEprEqr \\
\text{YRM. } EEpqErEEqErp & \quad \text{YRO. } EEpEqrEEpqr \\
\text{PYM. } EEEpErqEEqErp & \quad \text{XGK. } EpEEqErpEqr \\
\text{XHN. } EpEEqEEpqr & \quad \text{XCB. } EpEEpEqErqr.
\end{align*}

By a classic result in \cite{1} (cf. \cite{2}), rule D preserves the two-property, that is, for each set A of formulas, if every member of A has the two-property then so does each condensed A-theorem. In the case of such bases for EQ, we can identify their condensed theorems precisely:

Lemma 2. If A is a complete axiom set for EQ and each member of A has the two-property, then the condensed A-theorems are exactly the formulas with the two-property.

Proof. Where A is any complete axiom set for EQ in which each member has the two-property, Belnap's preservation result ensures that every condensed A-theorem has the two-property.
For the converse, we first prove, by induction on length, that for each formula \(\alpha \) in which no sentence letter occurs more than once, \(E\alpha \alpha \) is a condensed \(\mathbf{A} \)-theorem. Where \(\alpha \) is a sentence letter, \(E\alpha \alpha \) is a condensed \(\mathbf{A} \)-theorem by Lemma 1. For the induction step, choose any formula \(\alpha = E\beta\gamma \) in which no letter occurs more than once and assume, on inductive hypothesis, that \(E\beta\beta \) and \(E\gamma\gamma \) are condensed \(\mathbf{A} \)-theorems. By Lemma 1 again, \(EEpqEErsEEprEqs \) is also a condensed \(\mathbf{A} \)-theorem. With that theorem as major premise and \(E\beta\beta \) as minor, \(\mathbf{D} \) gives \(EErsEE\beta\beta s \). With the latter theorem as major and \(E\gamma\gamma \) as minor, a second application of \(\mathbf{D} \) then gives \(EE\beta\gamma E\beta\gamma \), that is, \(E\alpha \alpha \).

Now consider any formula, \(\tau \), with the two-property. Then \(\tau \) is in \(\mathbf{EQ} \) and so, by Lemma 1, is a substitution instance of some condensed \(\mathbf{A} \)-theorem, \(\tau' \). Let \(\alpha \) be like \(\tau \) but with each occurrence of a sentence letter in \(\tau \) replaced with a distinct new letter. \(E\alpha \alpha \) is then a condensed \(\mathbf{A} \)-theorem, whence application of \(\mathbf{D} \) with \(E\alpha \alpha \) as major and \(\tau' \) as minor gives \(\tau \).

Most of the known bases for \(\mathbf{EQ} \), then, are \(\mathbf{D} \)-incomplete. In fact, the only base with an axiom lacking the two-property the author has found in the literature is Wajsberg’s [16] axiom set \(\{ EEpqEqr Erp Eqp, EEEpppp \} \). To show that this set is, indeed, \(\mathbf{D} \)-complete, we employ a lemma from [10]:

Lemma 3. (Megill-Bunder [10]) For each set \(\mathbf{A} \) of formulas, if \(EEpqEEqr Erp Eqp, EEpqEErp Eqp, Epp, \) and \(EEqpEpEqpq \) are condensed \(\mathbf{A} \)-theorems, then (i) each substitution instance \(E\alpha \alpha \) of \(Epp \) is a condensed \(\mathbf{A} \)-theorem and (ii) \(\mathbf{A} \) is therefore \(\mathbf{D} \)-complete.

Proof. Details are given in [10]. That (i) follows from the hypothesis of the Lemma is established inductively along considerably more intricate lines than those used in the proof of Lemma 2 above. That (i) in turn gives (ii) is shown to hold for any set \(\mathbf{A} \) of formulas whatever: each \(\mathbf{A} \)-theorem, \(\tau \), must be an instance of a condensed \(\mathbf{A} \)-theorem, \(\tau' \), whence application of \(\mathbf{D} \) with \(E\tau\tau \) as major and \(\tau' \) as minor delivers \(\tau \).

Theorem 4. \(\{ EEpqEqr Erp Eqp, EEEpppp \} \) is a \(\mathbf{D} \)-complete base for \(\mathbf{EQ} \).

Proof. Since Wajsberg’s base is complete for \(\mathbf{EQ} \), Lemma 2 assures that \(EEpqEEqr Erp, EEpqEErp Eqp, \) and \(Epp \) are among its condensed theorems. To complete the proof, then, it is enough, by Lemma 3, to show that
$EEpEpqEpEpq$ is also D-derivable. As is standard practice, let $D_{m.n}$ be a representative alphabetic variant of the result of applying rule D to formula m as major and formula n as minor. We have:

1. $EEpEqErEqp$
2. $EEpppp$

$D1.1 = 3. EEpqEqErEqpr$
$D3.1 = 4. EpEEqErsEEsEpq$
$D1.4 = 5. EEEpEqrsEErEqps$
$D5.3 = 6. EEpqEqsEESpEqr$
$D1.6 = 7. EEpqErsEsEqEpr$
$D7.1 = 8. EEpqEEppErq$
$D7.6 = 9. EEpqErsEEprEqp$
$D8.9 = 10. EEEpqErsEEEqEqs$
$D9.8 = 11. EEpqEqErEqr$
$D10.2 = 12. EEEpqEppEppEpq$
$D12.10 = 13. EEppEpq$
$D13.11 = 14. EEpqEpEpq$

Though Wajsberg’s base is unique among previously reported axiom sets for EQ, other such bases—even single axioms—can be readily constructed. To convert the D-incomplete single axiom $YQF = EEpqEEprEqr$ to a D-complete single axiom, for example, it is enough to prefix $EsEsEsEs \ldots$ to it:

Theorem 5. \{EsEsEsEsEEpqEEprEqr\} is a D-complete base for EQ.

Proof. The single axiom YQF is clearly D-derivable from this base:

1. $EsEsEsEsEEpqEEprEqr$
$D1.1 = 2. EEpEpEpEpEEqEEqsErsEEpEpEpEEqrEEqsErsEEpEpEpEEqrEEqsErsEE\ldots$
$D2.1 = 3. EEpEpEpEpEEqEEqsErsEEpEpEpEppEpEEqrEEqsErsEE\ldots$
$D3.1 = 4. EEpEpEpEpEEqEEqsErsEE\ldots$
$D4.1 = 5. EEpqEEprEqr$

By Lemma 2, Wajsberg’s first axiom, $EEpEqErEqp$, is then D-derivable as well. To complete the proof of D-completeness it therefore suffices, by Theorem 4, to show that his second, $EEpppp$, is also D-derivable:
This method of constructing single axioms can be generalized:

Theorem 6. Let \(\mathcal{A} \) be any single axiom for \(\text{EQ} \), with \(s \) any letter not occurring in \(\mathcal{A} \). Then \(\{EsEsEsEs\mathcal{A}\} \) is a \(\mathcal{D} \)-complete base for \(\text{EQ} \).

Proof. Four successive detachments deliver \(\mathcal{A} \), from which, by Lemma 2, \(EEpEqrErEqp \) is \(\mathcal{D} \)-derivable. On the same grounds, \(EEWzEyEz\mathcal{A}-EEEwxyz \) (for \(w, x, y, z \) not in \(\mathcal{A} \)) is \(\mathcal{D} \)-derivable. With the latter as major premise and \(EsEsEsEs\mathcal{A} \) as minor, \(EEEpppp \) then follows by a single application of \(\mathcal{D} \), ensuring \(\mathcal{D} \)-completeness by Theorem 4\(^1\).

The \(\mathcal{D} \)-complete single axioms for \(\text{EQ} \) thus constructed are, as is Wajsberg’s \(\mathcal{D} \)-complete two-base, *inorganic* in the sense that each includes, as a proper subformula, another theorem of \(\text{EQ}-\text{Epp} \) in the Wajsberg case, a known single axiom in the other cases-while the alternate bases given in the literature, though organic, are \(\mathcal{D} \)-incomplete. It is, however, possible to construct a base for \(\text{EQ} \)-indeed, a single axiom-which is both \(\mathcal{D} \)-complete and organic:

\(^1\)If \(\mathcal{A} \) is one of the single axioms YQL, YQF, YQJ, UM, XGF, YRM, XGK, XHK, or XHN, \(EEEE\mathcal{A}ssss \) is also a \(\mathcal{D} \)-complete single axiom for \(\text{EQ} \). This construction lacks the generality of the method of Theorem 6 but is useful for systems other than \(\text{EQ} \). For example, \(CCCCCpCqrCCCCuvCllCllpssss \) is a \(\mathcal{D} \)-complete single axiom for \(\text{BCI} \), as is \(CCCCCCCCCpCqrCCCCuvCllCllpssss \) for \(\text{BCK} \).
Theorem 7. \{EEpqEE rqEsEsEsEpr\} is an organic D-complete base for EQ.

Proof. The formula in question is clearly organic since none of its proper subformulas have the two-property. Its D-completeness is assured by the following derivation from it of the D-complete axiom of Theorem 5:

1. \(EEpqEE rqEsEsEsEpr\)
 D1.1 = 2. \(EEpEE qrEsEsEsE tqE uEuEu Eu E trp\)
 D2.1 = 3. \(EpEpEpEpEE qrEqr\)
 D3.3 = 4. \(EEpEpEpEpEE qrEqrEEpEpEpEE qrEqrEE pr-EEqrEqrEEstE est\)
 D4.3 = 5. \(EEpEpEpEpEE qrEqrEEpEpEpEE qrEqrEEstE est\)
 D5.3 = 6. \(EEpEpEpEpEE qrEqrEEstE est\)
 D6.3 = 7. \(EEpqEpq\)
 D1.7 = 8. \(EEpEqrEsEsEsE EEq pr\)
 D2.8 = 9. \(EsEsEsEsEEpqEEprE prE pr\).

References

Department of Philosophy
Purdue University
West Lafayette, IN 47907-1360, U.S.A.
e-mail: dulrich@purdue.edu