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Abstract

We define the logic ICI complete with respect to certain ternary relational struc-

tures. ICI is a particular negation extension of Urquhart’s many-valued logic C.

The logic ICI is deductively equivalent to Esteva and Godo’s Involutive Monoidal

t-norm based logic IMTL.

1. Introduction

In this paper, we define the logic ICI. This logic is a particular negation
completion of Urquhart’s well-known many-valued logic C (see [9], [10]).
ICI is clearly sharply modelled in the ternary relational semantics, but, as
it turns out, ICI is deductively equivalent to the logic IMTL formalized in
[3] by Esteva and Godó. The logic ITML is an extension of the logic MTL
defined in the same paper. MTL abbreviates Monoidal t-norm based logic
and it is meant to be a basic system in the range of t-norm based logics.
The logic IMTL (involutive Monoidal t-norm based logic) is the extension
of MTL with the involutive negation axiom (INV)

¬¬A → A

On the other hand, ICI is an extension of the logic CI formalized in
[6]. The logic CI is the extension of Urquhart’s positive many-valued logic
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C (see[9], [10] and [4] for a correction on the logics C and CI) with the
characteristic negation axioms of intuitionistic logic

(A → ¬B) → (B → ¬A)
¬A → (A → B)

Now, ICI (Involutive CI) is formalized from CI as IMTL was from MTL.
That is, ICI is the result of extending CI with the involutive negation axiom
INV.

In the concluding remarks of this paper, we shall comment on the re-
lationship between IMTL (MTL) and ICI (CI) on the one hand, and with
Ono’s contractionless logics, on the other. We now turn to its structure.
In §2-4, we prove the completeness of CI with respect of certain ternary
relational structures. Although completeness of CI is proved in [6], the
completeness result we present here is new. In [6], negation was intuition-
istically modelled, i.e., it was understood as a special kind of conditional

¬A =df A → F

where F is a falsity constant which is satisfied in none of the points of the
model. In this paper, instead, we shall formalize negation by means of the
”Routley star” ?. (This will ease the formalization of the negation in ICI,
that is the first aim of this paper).

In connection with the relational ternary semantics presented here, let
us make a couple of remarks. First, as it is well known, these semantics
were in principle designed for relevance logics and theories in their envi-
ronment need not be non-null, consistent or complete. Nevertheless, we
will show how to adapt the semantics to the highly paradoxical logic ICI.
In particular, we show how to treat the non-null, (absolutely) consistent
theories required in the ICI models. Secondly, the operator ? is always used
in the relational ternary semantics to formalize involutive types of nega-
tion. We will show, however, how to use ? to formalize the non-involutive
negation that is characteristic of CI (and MTL).

In §5, 6 we formalize the logic ICI and in §7 we prove the deductive
equivalence between IMTL and ICI. We shall prove this by using a result of
Pei in [8] on the relationship between Wang’s logic L∗0 and IMTL. Paragraph
8 is an appendix on the logics included in TW+ (therefore in ICI) and
the contraction and reductio axioms that, as it is known, are not valid in
ÃLukasiewicz’s logics in which ITML is included. (TW+ is positive Ticket
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Entailment without the contraction axiom (see, e.g., [1]). Finally, we state
some brief concluding remarks.

2. The logic CI

The logic CI is axiomatized with

A1. (A → B) → [(B → C) → (A → C)]
A2. A → [(A → B) → B]
A3. A → (B → A)
A4. (A → B) ∨ (B → A)

A5a. (A ∧B) → A
A5b. (A ∧B) → B
A6. [(A → B) ∧ (A → C)] → [A → (B ∧ C)]

A7a. A → (A ∨B)
A7b. B → (A ∨B)
A8. [(A → C) ∧ (B → C)] → [(A ∨B) → C]
A9. [A ∧ (B ∨ C)] → [(A ∧B) ∨ (A ∧ C)]

A10. (A → ¬B) → (B → ¬A)

The rules of inference are Modus ponens (MP): if ` A and ` A → B,
then ` B, and Adjunction (adj.): if ` A and ` B, then ` A ∧B.

Some representative theses of SW are:

T1. [A → (B → C)] → [B → (A → C)] A1, A2
T2. B → (A → A) A3, T1
T3. A → A T2
T4. (B → C) → [(A → B) → (A → C)] A1, T1
T5. [(A → B) → C] → (B → C) A1, A3
T6. [(A → B) → (A → C)] → [B → (A → C)] T5
T7. [(A → B) → (A → C)] → [A → (B → C)] T1, T6
T8. [(A → A) → B] → B A2, T3
T9. A → [B → (A ∧B)] A3, A6, T2
T10. [(A ∧B) → C] → [A → (B → C)] A1, T1, T9
T11. (A → B) → [(A → C) → [A → (B ∧ C)]] A6, T10
T12. (A → C) → [(B → C) → [(A ∨B) → C]] A8, T10
T13. (A → B) → [(A ∧ C) → (B ∧ C)] A5, T1, T11
T14. (A → B) → [(A ∨ C) → (B ∨ C)] A7, T1, T12
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T15. [A → (B ∧ C)] → [(A → B) ∧ (A → C)] A5, A6
T16. [(A ∨B) → C] → [(A → C) ∧ (B → C)] A6, A7
T17. [(A → B) ∨ (A → C)] → [A → (B ∨ C)] A7, A8
T18. [(A → C) ∨ (B → C)] → [(A ∧B) → C] A5, A8
T19. [A → (B ∨ C)] → [(A → C) ∨ (B → C)]

A4, A7, A8, T1, T3, T12
T20. [(A ∧B) → C] → [(A → C) ∨ (B → C)]

A4, A7, A8, T1, T3, T11
T21. (A ∨B) ↔ (B ∨A) A7, A8
T22. (A ∧B) ↔ (B ∧A) A5, A6
T23. [A ∨ (B ∨ C)] ↔ [(A ∨B) ∨ C] A7, A8
T24. [A ∧ (B ∧ C)] ↔ [(A ∧B) ∧ C] A5, A6
T25. A ↔ (A ∨A) A7, A8, T3
T26. A ↔ (A ∧A) A5, A6, T3
T27. A ↔ [A ∨ (A ∧B)] A5, A7, A8, T3
T28. A ↔ [A ∧ (A ∨B)] A5, A6, A7, T3
T29. [A ∧ (B ∨ C)] ↔ [(A ∧B) ∨ (A ∧ C)]

A5, A6, A7, A8, A9
T30. [A ∨ (B ∧ C)] ↔ [(A ∨B) ∧ (A ∨ C)]

A5, A6, A7, A8, A9
T31. A → ¬¬A A10
T32. (A → B) → (¬B → ¬A) A10, T31
T33. ¬A → (A → B) A3, A10
T34. A → (¬A → B) T1, T33
T35. [B → ¬ (A → A)] ↔ ¬B A10, T8, T33
T36. ¬ (A ∨B) ↔ (¬A ∧ ¬B) A5, A6, A7, A8, A10, T32
T37. (¬A ∨ ¬B) → ¬ (A ∧B) A5, A8, T32
T38. (A ∨B) → ¬ (¬A ∧ ¬B) A10, T36
T39. (A ∧B) → ¬ (¬A ∨ ¬B) A10, T37
T40. ¬ (A ∧B) → (¬A ∨ ¬B) T20, T35
T41. (A ∨B) → (¬A → B) A3, T34
T42. (¬A ∨B) → (A → B) A3, T33
T43. (¬A → B) ∨ (A → ¬B) A4, A10
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3. Semantics for CI

A CI model is a quadruple < K,R, ?, |=> where K is a non-empty set, R
is a ternary relation on K and ? an operation on K satisfying the following
definitions and conditions.

For every a, b, c, d ∈ K (quantifiers ranging over K):

d1. a ≤ b =df ∃xRxab
d2. R2abcd =df ∃x (Rabx & Rxcd)
P1. a ≤ a
P2. a ≤ b & Rbcd ⇒ Racd
P3. R2abcd ⇒ ∃x (Racx & Rbxd)
P4. Rabc ⇒ Rbac
P5. Rabc & Rade ⇒ b ≤ e or d ≤ c
P6. Rabc ⇒ Rac?b?

P7. a ≤ a??

Finally, |= is a valuation relation from K to the sentences of the propo-
sitional language satisfying the following conditions for all formulas p, A,
B and point a in K:

(i). a |= p and a ≤ b ⇒ b |= p
(ii). a |= A ∨B iff a |= A or a |= B
(iii). a |= A ∧B iff a |= A and a |= B
(iv). a |= A → B iff for all b, c ∈ K, (Rabc & b |= A) ⇒ c |= B
(v). a |= ¬A iff a? 6|= A

A is valid in CI (|= A) iff a |= A for all a ∈ K in all models.
Some features of these semantics clearly distinguish them from the

standard relevance semantics. One of them is, of course, postulate P5. But
the really essential ones are the following three. Firstly, the definition of
validity in respect of all the points in K , not in respect of some designated
subset of K . Secondly, the definiton of the binary relation ≤ in respect
of any element in K and not in respect of some designated subset of K.
And finally, the fact that negation is not involutive. The first two features
automatically verify the usual set of implicative paradoxes. On the other
hand, we remark that the following conditions are fulfilled in all models:
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P8. (a ≤ b & b ≤ c) ⇒ a ≤ c P2, P4, d1
P8’. d ≤ b & Rabc ⇒ Radc P2, P4
P9. Rabc ⇒ b ≤ c d1
P10. Rabc ⇒ a ≤ c P4, d1
P11. R2abcd ⇒ ∃x (Rbcx & Raxd) P3, P4, d2
P12. R2abcd ⇒ R2acbd P3, P4, d2
P13. a ≤ b ⇒ b? ≤ a? P6, d1
P14. Rabc? ⇒ Racb? P8’, P6, P7
P15. ∃x Ra?ax P1, P4, P6

We sketch a proof of the semantic consistency theorem (correctness).
We have:

Proposition 1. (a ≤ b & a |= A) ⇒ b |= A

Proof. By induction on the length of A. Use P2 in the case of the
conditional and P13 in the case of negative formulas. 2

Proposition 2. |= A → B iff for all a ∈ K in all models, if a |= A, then
a |= B.

Proof. By P1 and Proposition 1. 2

Proposition 3. If a |= A, then a? 6|= ¬A

Proof. By Clause (v) and P7. 2

Then, we have:

Theorem 1.(semantic consistency) If |= A, then |= A.

Proof. Use Proposition 2 and the semantic postulates as follows: A6-
A10, MP and adj. are trivial. Then, A1, A2, A3 and A4 are verified by
P3, P4, P10 and P5, respectively. Finally, A10 is verified by P6 with the
assistance of Proposition 3. 2

We finish this section with the following note:

Note. We remark that mere clauses (ii), (iii) and (v) are sufficient for
T41 ¬ (A ∧B) → (¬A ∨ ¬B) to be satisfied. But T41 is not, of course,
intuitionistically valid. Given that the above mentioned clauses seem to be
the adequate ones for the respective connectives, this obviously means that
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types of negation equal to or weaker than the intuitionistic one are not rep-
resentable with the ”Routley star” ?Thus, for example, we cannot provide
a similar semantics to these developed in this paper for the intuitionistic
logics of [7].

4. Completeness of CI

The canonical model is the structure < KC , RC , ?C , |=C> where KC is
the set of all non-null prime consistent theories, RC is such that for any a,
b ∈ KC , RCabc iff for all wff A, B, (A → B ∈ a & A ∈ b) ⇒ B ∈ c, ?C is
such that for any a ∈ KC , a?C is defined like this: a?C =df {A: ¬A /∈ a},
and |=C is such that for any a ∈ KC and wff A, a |=C A iff A ∈ a.

A theory a is a set of wff closed by adjunction and provable entailment,
i.e., a is a theory if (i) if A, B ∈ a, then A∧B ∈ a and (ii) if ` A → B and
A ∈ a, then B ∈ a. A theory is regular if it contains all the theorems of CI.
A theory is inconsistent if it contains the negation of a theorem. Finally,
a theory a is non-null if no wff belongs to it, and a theory a is prime if
whenever A ∨B ∈ a, then A ∈ a or B ∈ a.

Now, as it was pointed out in the Introduction, we have to adapt the
standard argument for relevance logics (see, e.g., [1]) to the case of non-null,
consistent theories. We prove:

Proposition 4. If a is a non-null theory, then a is regular

Proof. By A3 2

Proposition 5. If A ∈ a, then ¬A /∈ a?C .

Proof. By T31 and definitions. 2

Proposition 6. If a is a prime theory, then a?C is a prime theory.

Proof. (i) a?C is closed by provable entailment: by T32. (ii) a?C is
closed by adjunction: by T40. (iii) a?C is prime: by T37. 2

Proposition 7. A theory is inconsistent iff every wff belongs to it.

Proof. From left to right (proof from right to left is obvious): suppose
that a is an inconsistent theory, i.e., suppose ¬B ∈ a for some theorem B.
By T34, ` ¬B → C. Consequently, C ∈ a where C stands for any wff. 2
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It is worth noting that contradiction does not necessarily entails in-
consistency (we do not have (A ∧ ¬A) → B) though the converse obviously
holds.

Proposition 8. If a is a consistent theory, then a?C is a non-null theory.

Proof. Let C be a theorem and C /∈ a?C . Then, ¬C ∈ a by definition.
But a is consistent. 2

Proposition 9. If a is a regular theory, then a?C is consistent.

Proof. Suppose ¬B ∈ a?C for some theorem B. By Proposition 5, B /∈ a.
But a is regular. 2

Proposition 10. ?C is an operation on KC ,that is, if a is a non-null
prime consistent theory, then so is a?C .

Proof. By Propositions 6, 8 and 9 2

Proposition 11. If a and b are non-null theories, then the set x = {B:
∃A(A → B ∈ a and A ∈ b)} is a non-null theory such that RT abx (RT is
the generalization of RC to the set of all theories).

Proof. It is easy to prove that x is closed by adjunction and provable
entailment. RT abx is obvious and that x is non-null is proved as follows.
Suppose ` B and C ∈ b. By A3, ` C → B. As a is non-null, it is regular
(Proposition 4), so C → B ∈ a. By RT abx, B ∈ x. 2

Note that if a and b are consistent theories and RT abx, we do not
generally have that x is a consistent theory. Actually, what we have is

Proposition 12. If RT abc and c is consistent, then a and b are consis-
tent.

Proof. (i) Suppose b inconsistent. Then ¬A ∈ b for some theorem
A. By T34, ` ¬A → B. As a is regular, ¬A → B ∈ a. So, B ∈ c.
But C represents any wff. (ii) Suppose a inconsistent. By Rabc and P4,
Rbac.Then, by a similar argument, C would be inconsistent. 2

Now, the proofs of the two following Propositions would be similar to
the ones provided in relevance logics (see, e.g., [1])
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Proposition 13. For each non-theorem A there is some x ∈ KC such
that A /∈ x.

Proposition 14. For any a, b ∈ KC , a ≤C b iff a ⊆ b

Next, we have

Proposition 15. The canonical valuation relation is a valuation rela-
tion.

Proof. Clauses (i)-(iii) are trivial and clause (v) is immediate by def-
initions, so the clause of interest is (iv). From left to right, the proof is
immediate. From right to left, the proof is as follows. Suppose a 6|= A → B
for some a ∈ KC and some wff A, B. We prove that there are b, c ∈ KC

such that b |= A and c 6|= B. We define the sets x = {B: ` A → B}
and y = {B: C → B ∈ a and c ∈ x} that are non-null theories such that
RT axy, x |= A, y 6|= B. Then, we prove that x and y are consistent.

(i) x is consistent : Suppose ¬C for some theorem C. By definition
of x, ` A → ¬C. By A10, ` C → ¬A. As C ∈ a (a is regular), ¬A ∈ a.
By T33, contradicting our hypothesis, A → B ∈ a.

(ii) y is consistent : Suppose ¬C for some theorem C. By definition
of y, D → ¬C ∈ a for some D ∈ x.By definition of x, ` A → D. By
A1, ` (D → ¬C) → (A → ¬C). So, A → ¬C ∈ a. By A2 and the
theoremhood of C, ` (C → ¬A) → ¬A. Then, ¬A ∈ a by A10. Whence,
by T33, A → B ∈ a, which contradicts our hypothesis.

Finally, x and y are extended to prime theories b and c in the custom-
ary way. 2

Proposition 16. The semantical conditions P1-P6 hold in the canonical
model.

Proof. P1, P2, P3, P4, P6 are proved just as in the standard semantics
and P5 easily follows with A4. Next, P7 is proved by Proposition 5 and
definitions and finally, P3 is proved as follows. Suppose RC2abcd. Define
y = {B: A → B ∈ a and a ∈ c}. The set y is a non-null theory such
that Racy (Proposition 11). Moreover, Rbyd holds by A1. Now, the proof
that y is consistent is similar to the proof given for x in Proposition 15 (i).
Next, y is extended to a prime theory e such that Race and Rbed. 2

By Propositions 13, 15 and 16, we have
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Proposition 17. The canonical model is in fact a model.

Finally, by Propositions 13 and 17 we have

Theorem 2. (Completeness of CI) If |= A, ` A

5. The logic ICI

The logic ICI (Involutive CI) is the result of adding the axiom

A11. ¬¬A → A

to CI. In addition to T1-T44, the following are theorems of ICI:

T45. (¬A → ¬B) → (B → A) A10, A11
T46. (¬A → B) → (¬B → A) T31, T45
T47. ¬ (¬A ∧ ¬B) → (A ∨B) T37, T46
T48. ¬ (¬A ∨ ¬B) → (A ∧B) T41, T46
T49. ¬ (A → B) → (A ∧ ¬B) A11, T37, T43
T50. ¬ (A → ¬B) → (A ∧B) A11, T49

Also, we have:

Proposition 18. Any of T45-T50 can axiomatize ICI instead of A11.

Proof. A11 is derivable from each one of these theorems as follows.
T46: by T3; T45: deduce T46 with T31; T47, T48: ¬¬A → ¬(¬A ∧ ¬A),
¬¬A → ¬(¬A ∨ ¬A) are immediate. T49, T50: by T35. 2

6. Semantics for ICI

A ICI model is the same as a CI model save for the addition of the condition:

P16. a?? ≤ a

We remark that the following conditions are fulfilled in all models:

P17. Rab?c ⇒ Rac?b P6, P15
P18. Ra?bc ⇒ Rbc?a P4, P17
P19. Ra?bc ⇒ b ≤ a P10, P18
P20. Ra?bc ⇒ c? ≤ a P9, P17



Relational Ternary Semantics ... 111

In order to prove the semantic consistency of ICI, we note that Propo-
sition 3 can be strengthened to

Proposition 19. a? |= ¬A iff a 6|= A.

Proof. By clause (v), P7 and P16. 2

Then we have:

Theorem 3. (Semantic consistency of ICI) If ` A, then |= A.

Proof. We just have to prove that A11 is valid: use Proposition 19 and
P16. 2

To prove the completeness of ICI we note that Proposition 5 can be
strengthned to

Proposition 20. ¬A ∈ a?C iff A /∈ a.

Proof. By T31, A11 and definitions. 2

Finally, we have:

Theorem 4. (Completeness of ICI) If |= A, then ` A.

Proof. We just have to prove that P16 holds in the canonical model: use
Proposition 20. 2

7. Deductive equivalence between ICI and
IMTL

In this section we prove that ICI and IMTL are deductively equivalent log-
ics. Wang introduces and motivates in [11] the fuzzy propositional calculus
L∗0. This logic is axiomatized as follows (see [8]; we refer to the list of
axioms and theorems in §2 and §5): A3, A7, A8, T1, T2, T9, T11, T20,
T21, T31, T45 and modus ponens as the sole rule of inference. Now, Pei
proves that L∗0 and IMTL are equivalent logics ([8], Theorem 7). Therefore
we have:

Proposition 21. L∗0 and IMTL are deductively included in ICI.
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On the other hand, A1, A3, A4 and A5-A11 of ICI are theorems of
IMTL ([3], Proposition 1), and A2, A11 and adjunction of ICI are trivially
proved in IMTL as follows (we refer to [3] ):

A2. A → [(A → B) → B]: from A7b, [(ϕ&ψ) → χ] → [ϕ → (ψ → χ)]
and [ϕ&(ψ → χ)] → ψ (Proposition 1, (4)).

A11. (¬A → ¬B) → (B → A): from (¬ϕ → ¬ψ) → (ψ → ϕ) (Propo-
sition 4, (36)) and ¬¬ϕ → ψ (INV, p.276).

Adjunction (if ` A and ` B, then ` A ∧ B): from ϕ → [ψ → (ϕ&ψ)]
and (ϕ&ψ) → (ϕ ∧ ψ) (Proposition 1, (5), (9)). Therefore we have:

Proposition 22. ICI is deductively included in IMTL.

And from propositions 19 and 20:

Proposition 23. L∗0, IMTL and ICI are deductively equivalent.

Let us examine these logics from another point of view. The logic
MTL referred to in the introduction to this paper can be axiomatized
dropping the involutive double negation axiom INV from IMTL. Now, MTL
is equivalent to Ono’s well-known contractionless logic Flew extended with
the linearity axiom (Lin) (ϕ → ψ) ∨ (ψ → ϕ), Flew [Lin] ([5], pp. 18-19).
Then, the result of adding INV to Flew is equivalent to ICI (L∗0 , IMTL).

We finish this section with the following note:

Note. It can directly be proved that IMTL is deductively included in
ICI. We define

A & B =df ¬ (A → ¬B)
Ō =df ¬ (A → A)

where & and Ō are the strong conjunction and the truth constant of IMTL,
respectively, and →, ¬ the conditional and the negation of ICI. Then, it is
not difficult to prove the axioms of ITML in which & or Ō appear, to wit
([3], p.273):

A2. (ϕ&ψ) → ϕ
A3. (ϕ&ψ) → (ψ&ϕ)
A6. [ϕ&(ϕ → ψ)] → (ϕ ∧ ψ)
A7a. [ϕ → (ψ → χ)] → [(ϕ&ψ) → χ]
A7b. [(ϕ&ψ) → ψ] → [ϕ → (ψ → χ)]
A9. Ō → ϕ
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Finally the axiom

A8. [(ϕ → ψ) → χ] → [[(ϕ → ψ) → χ] → χ]

is immediate from A4, T1 and A12 of ICI.

8. Concluding remarks

Let us look at CI from alternative perspectives. Ciabattoni defines in [2] the
logic C] and proves by proof-theoretical methods that C] is decidable. Well,
it would be easy to prove that C] and CI are equivalent logics. Still, from
another point of view, CI is Ono’s contractionless logic Flew without fusion
◦ and extended with the linearity axiom A4 of §2, i.e., CI is equivalent to
(the fusion-free fragment of) Flew [Lin] (see [4], pp. 18-19). Then, given the
equivalence between MTL and Flew [Lin] (see §6), CI would, in principle,
be equivalent to the strong conjunction-free fragment of MTL. Now, we
think that the results in this paper help to clarify the relationship between
relevance and many-valued logics and, so, between relational semantics
and algebraic semantics. In this sense, it would certainly be interesting to
formalize in the ternary relational semantics the extension of CI equivalent
to MTL (or Flew [Lin]) as well as the semantics for other extensions of
MTL (or Flew [Lin]) or IMTL ( or Flew plus the axiom INV) (see [3] or
[4] for a survey of these extensions).

A. An appendix on the contraction and re-
ductio axioms

Consider the following contraction and reductio axioms:

t1. [A → (A → B)] → (A → B)
t2. [A → (B → C)] → [(A → B) → (A → C)]
t3. (A → B) → [[A → (B → C)] → (A → C)]
t4. [A → (B → C)] → [(A ∧B) → C]
t5. ¬ (A ∧ ¬A)
t6. A ∨ ¬A
t7. [A → (B ∧ ¬B)] → ¬A
t8. If ` A → B and ` A → ¬B, then ¬A
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t9. (A ∧ ¬A) → B
t10. (A → ¬A) → ¬A
t11. (¬A → A) → A
t12. (A → B) → [(A → ¬B) → ¬A]
t13. (¬A → B) → [(¬A → ¬B) → ¬A]
t14. (A → B) → [(¬A → B) → B]
t15. (A ∧B) → ¬ (A → ¬B)
t16. (¬A → B) → (A ∨B)
t17. [(A → B) → A] → A

These axioms t1-t17 are not valid in ÃLukasiewicz’s three valued logic.
Therefore, they are not theorems of ICI.

Now, let TW+ (Positive Ticket Entailment without contraction) be
axiomatized with A1, T2, T3, A5-A9 and MP and adj. as rules of inference.
TW (Ticket Entailment without contraction) is the result of adding A10
and A11 to TW+; EW+ (Positive Entailment logic without contraction) is
the result of adding the assertion rule (asser.) ` A ⇒ ` (A → B) → B to
TW+, and finally, EW (Entailment logic without contraction) is the result
of adding asser. to TW. (cfr., e.g., [1]).

We remark that all the logics we have just defined are included in ICI.
We have (proofs are left to the reader):

Proposition 24. Given TW, t10-t16 are equivalent

Proposition 25. Given TW+, t1 is derivable from t3 or t4

Proposition 26. Given TW+, t1 is derivable from t17

Proposition 27. Given TW, t5-t9 are equivalent

Proposition 28. Let us add the thesis (A → B) → (A → A) to TW,
then t5 and t10 are equivalent

It is immediate from these propositions that if any of the axioms (t1-
t16) is added to ICI, either the contraction axiom t1 or else the reductio
axiom t8 is derivable. But it is clear that we have

Proposition 29. ICI plus t1 or t8 is classical propositional logic.
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