COMBINING TIME AND KNOWLEDGE,
SEMANTIC APPROACH

Abstract
The paper investigates a semantic approach for combining knowledge and time. We introduce a multi-modal logic $L(T_K)$ containing modalities for knowledge and time in a semantic way, as the set of all T_K-valid formulae for a class of special frames T_K. The main result of our paper is the theorem stating that $L(T_K)$ is decidable and giving a resolving algorithm. The result is proven by using standard tools: filtration, bulldozing and contracting p-morphisms.

1. Introduction
The paper is devoted to study a semantic approach to model knowledge and time. Study of time and knowledge within framework of modal logic is an active area nowadays (cf. [2], [3], [4], [6] and references therein). Sound and complete axiomatizations for a number of different logics involving modalities for knowledge and time are found in [4]. Our approach, in a sense, is from an opposite site: we generate a logic combining knowledge and time in a semantic manner, via a class of frames which defines such a logic. Our aim is to study the question about decidability. We would like to investigate to which extend a standard technique of modal logic works, we like to construct a deciding algorithm using only standard technique of modal logics without involving heavy technique as automatons or the Rabin theorem.
We model the time as a linear discrete sequence of time states, and the knowledge is represented by a tuple of modal-like operations K_i (imitating knowledge of agents) which operates in time states containing a set of information nodes. We start by introduction of a certain class of multi-modal Kripke frames which have the structure described above and generate the logic $L(TK)$ as the set of all formulae which are valid in these frames. We assume time flow to be linear and discrete and agents operating synchronously: they have access to a sort of shared clock\(^3\), each agent knowing what time it is and distinguishing present from future time. The main result of our paper is the theorem stating that $L(TK)$ is decidable and giving a resolving algorithm.

2. Notation, Definitions

General notation and definitions concerning modal logics which we will use can be found, for instance, in [1], [5]. To study the combination of knowledge and time we will use the language of multi-modal logic. Our language L^{TK} is chosen as follows: the alphabet of L^{TK} contains propositional letters $P := \{p_1, ..., p_n, ...\}$, round brackets $(,)$, standard boolean operations, and the set of modal operations $\{\Box, \Diamond, \{K_i \mid i \in I := \{1, ..., k\}\}$. Well formed formulae (wff) are defined in the standard way, in particular, if A is a wff, then $\Box A$, $\Diamond A$, $K_i A$, for all $i \in I$, are wff. $\text{Fma}(L)$ is the set of all well formed formulae of L^{TK}. The informal meaning of the modal operations is as follows. The set $I := \{1, ..., k\}$ indicates k distinct agents. $\Box A$ means: the formula A will always be true; $K_i A$: the agent i knows A in the current time state and the current information node; $\Diamond A$: the wise agent knows A in the current time state and current information node.

Semantics for this language is based on linear and discrete time flow, associating a time point with any natural number n. As semantic tools we will use the following Kripke-Hintikka frames: $T_K := (W_{TK}, R_{\leq}, R_{\prec}, R_1, ..., R_k)$, where the base set of T_K is the disjoint union of sets \mathcal{C}^n, $W_{TK} := \bigcup_{n \in \mathbb{N}} \mathcal{C}^n$. Binary relations R_{\leq}, R_{\prec}, and $R_1, ..., R_k$ are as follows: R_{\leq} is the following linear, reflexive and transitive relation on $W_{TK} \times W_{TK}$:

\[
\forall x, y \in W_{TK} (x R_{\leq} y \text{ iff } \exists n_1, n_2 \in \mathbb{N} ((x \in \mathcal{C}^{n_1}) \& \& (y \in \mathcal{C}^{n_2}) \& (n_1 \leq n_2)));
\]

\(^3\)See Fagin et al., [2], pp. 127-128.
R_n is the equivalence relation on any $C^n \in W_{\mathcal{K}}$:
\[\forall x, y \in W_{\mathcal{K}}, (xR_n y) \iff \exists n \in \mathbb{N} (x \in C^n \& y \in C^n); \]
Any R_n is some equivalence relation on any C^n.

The informal meaning of these frames is as follows. Any cluster C^n contains a set of information nodes available at the time point n. The relation R_n is the connection of the information nodes by time current: $xR_n y$ indicates that the node y is a node available in the same time as x, or y is an information node in a future time point. $xR_n y$ says that x and y are nodes in the same time point, and $xR_n y$ indicates that in the current time point y is accessible from x by of the agent i authorities. A model $\mathcal{M}_{\mathcal{K}}$ on $\mathcal{T}_{\mathcal{K}}$ is a tuple $\mathcal{M}_{\mathcal{K}} = \langle \mathcal{T}_{\mathcal{K}}, V \rangle$ where V is a valuation of a set P of propositional letters in $\mathcal{T}_{\mathcal{K}}$. That is, for any $p_i \in P$ $V(p_i) \subseteq W_{\mathcal{K}}$.

The valuation V can be extended from the set P onto all wff’s constructed from P in the standard way. In particular, $\forall x \in W_{\mathcal{K}},$
\[x \models_{V} \Box_x A \iff \forall y \in W_{\mathcal{K}} (xR_n y \Rightarrow y \models_{V} A); \]
\[x \models_{V} \Diamond_x A \iff \forall y \in W_{\mathcal{K}} (xR_n y \Rightarrow y \models_{V} A); \]
\[x \models_{V} K_i A \iff \forall y \in W_{\mathcal{K}} (xR_n y \Rightarrow y \models_{V} A). \]

Let $\mathcal{M}_{\mathcal{K}} := \langle \mathcal{T}_{\mathcal{K}}, V \rangle$ be a model on a frame $\mathcal{T}_{\mathcal{K}}$; a formula $A \in Fma(\mathcal{L}_{\mathcal{K}})$ is said to be true in $\mathcal{M}_{\mathcal{K}}$ at the point $a \in W_{\mathcal{K}}$ if $a \models_{V} A$. A formula A is true in the model $\mathcal{M}_{\mathcal{K}}$, notation $\mathcal{M}_{\mathcal{K}} \models A$, if $\forall a \in W_{\mathcal{K}}, a \models_{V} A$. A is valid in the frame $\mathcal{T}_{\mathcal{K}}$ notation $\mathcal{T}_{\mathcal{K}} \models A$, if, for any model $\mathcal{M}_{\mathcal{K}}$ on $\mathcal{T}_{\mathcal{K}}$, $\mathcal{M}_{\mathcal{K}} \models A$.

Definition 2.1. The logic $L(\mathcal{T}_{\mathcal{K}})$ is the set of all $\mathcal{T}_{\mathcal{K}}$-valid formulae:
\[L(\mathcal{T}_{\mathcal{K}}) := \{ A \in Fma(\mathcal{L}_{\mathcal{K}}) \mid \mathcal{T}_{\mathcal{K}} \models A, \forall \mathcal{T}_{\mathcal{K}}\text{-frame} \} \]

3. Decidability

The aim of our paper is to prove that the logic $L(\mathcal{T}_{\mathcal{K}})$ is decidable. Initially we will show that any formula A which is not a theorem of $L(\mathcal{T}_{\mathcal{K}})$ can be refuted by a frame similar to $\mathcal{T}_{\mathcal{K}}$ but of a finite size computable from the length of A. Consider and fix for the rest of this paper a formula A such that $A \notin L(\mathcal{T}_{\mathcal{K}})$. Then there is a frame $\mathcal{T}_{\mathcal{K}}$ and a model $\mathcal{M}_{\mathcal{K}} := \langle \mathcal{T}_{\mathcal{K}}, V \rangle$ based on this frame such that, $\exists a \in W_{\mathcal{K}}, (\mathcal{M}_{\mathcal{K}}, a) \not\models_{V} A$. Firstly we reduce the number of elements in any C^n to a finite number of ones effectively bounded from size of A. This can be easy done by a standard filtration
on any separate C^n. Below we briefly sketch this technique. Let $\text{Sub}(A)$ be the set of all the sub-formulae of A. Define the equivalence relation \approx on $W_{\mathcal{T}_n}$ as follows: $\forall a, b \in W_{\mathcal{T}_n} [a \approx b$ iff $\exists n \in \mathbb{N} (a, b \in C^n$ & $\forall \beta \in \text{Sub}(A) (a \models_{\mathcal{V}} \beta$ iff $b \models_{\mathcal{V}} \beta))].$ Next, define the quotient set of the original model: $\forall a \in W_{\mathcal{T}_n} [a]_{\approx} := \{b \mid a \approx b\}, \forall n \in \mathbb{N} C^n_{\approx} := \{[a]_{\approx} \mid a \in C^n\}, W_{\mathcal{T}_n}^{\approx} := \bigcup_{n \in \mathbb{N}} C^n_{\approx}$.

The model resulting from this filtration is based on this quotient set and looks as follows: $\mathcal{M}_{\mathcal{T}_n}^{\approx} := \langle W_{\mathcal{T}_n}^{\approx}, R^n_{\approx}, R^n_{\approx}, ..., R^n_{\approx}, V^{\approx}\rangle$ where: $\forall p \in \text{Sub}(A)$, $V^{\approx}(p) := \{[a]_{\approx} \mid a \in V(p)\}; \forall [a]_{\approx}, [b]_{\approx} \in W_{\mathcal{T}_n}^{\approx}$,

\[[a]_{\approx} R^n_{\approx} [b]_{\approx} \text{ iff } \exists n, m \in \mathbb{N} ([a]_{\approx} \in C^n_{\approx} \land [b]_{\approx} \in C^n_{\approx} \land n \leq m); \]

\[[a]_{\approx} R^n_{\approx} [b]_{\approx} \text{ iff } \exists n, m \in \mathbb{N} ([a]_{\approx} \in C^n_{\approx} \land [b]_{\approx} \in C^n_{\approx} \land n = m); \]

$\forall i \in I [a]_{\approx} R^n_i [b]_{\approx}$ iff $\exists n \in \mathbb{N} ([a]_{\approx}, [b]_{\approx} \in C^n_{\approx}$ & $\forall \beta \in \text{Sub}(A) ((\mathcal{M}_{\mathcal{T}_n}, a) \models_{\mathcal{V}} K_i \beta$ iff $(\mathcal{M}_{\mathcal{T}_n}, b) \models_{\mathcal{V}} K_i \beta).$ Since the model described is a result of filtration the standard filtration-lemma holds:

Lemma 3.1. For any formula $\beta \in \text{Sub}(A)$, for any element $a \in W_{\mathcal{T}_n}$ $(\mathcal{M}_{\mathcal{T}_n}, a) \models_{\mathcal{V}} \beta$ iff $(\mathcal{M}_{\mathcal{T}_n}^{\approx}, [a]_{\approx}) \models_{\mathcal{V}^{\approx}} \beta.$

Corollary 3.2. $\mathcal{M}_{\mathcal{T}_n}^{\approx} \models_{\mathcal{V}^{\approx}} A.$

Lemma 3.3. If $\|\text{Sub}(A)\| := m$, then $\forall n \in \mathbb{N}, \|C^n_{\approx}\|$ is at most 2^m.

Thus the model $\mathcal{M}_{\mathcal{T}_n}^{\approx}$ refutes A and has clusters C^n of effectively bounded size. Using $\mathcal{M}_{\mathcal{T}_n}^{\approx}$ we will construct a finite model refuting A. The clusters C^0_{\approx} and C^1_{\approx} are isomorphic (we will use in the sequel notation: $C^0_{\approx} \cong C^1_{\approx}$) if and only if there is a function f s.t.: $f : C^0_{\approx} \rightarrow C^1_{\approx}$, (1) f is a bijection, (2) $\forall \xi \in \{\preceq, \sim, 1, ..., k\}, \forall a, b \in C^0_{\approx} (a R^n\xi b$ iff $f(a) R^n\xi f(b))$, (3) $\forall p \in \text{Sub}(A), \forall a \in C^0_{\approx} (a \in V^{\approx}(p)$ iff $f(a) \in V^{\approx}(p))$. By Lemma 3.3 we conclude

Proposition 3.4. There is only a finite, computable from A, number of non-isomorphic time-clusters $C^n_{\approx} \in W_{\mathcal{T}_n}^{\approx}$.

For any time cluster C^n_{\preceq}, C^m_{\preceq} is the set of all the \preceq-successor clusters of $C^n_{\preceq} : \forall C^n_{\preceq} \in W_{\mathcal{T}_n}, C^n_{\preceq} := \{C^j_{\preceq} \mid n \leq j\}, \text{ and } C^n_{\preceq}^+ := \bigcup C^n_{\preceq}$. In the sequel, $C^n_{\preceq}^+(M)$ or $C^n_{\preceq}^-(M)$ are described sets from a frame M (we will alter these frames M).
DEFINITION 3.5. The time-cluster \(C^n_\approx \) is a stabilizing cluster if and only if for any \(C^n_\approx \), where \(n \leq j \), the sets \(C^n_\approx \) and \(C^j_\approx \) coincide up to isomorphism of clusters.

LEMMA 3.6. The model \(M^2_{\approx k} \) has a stabilizing cluster \(C^a \).

PROOF. By Proposition 3.4 the number of non-isomorphic time-clusters \(C^n_\approx \in W^\approx \approx_k \) is finite. The following also holds: \(\forall n, j \in \mathbb{N}, n \leq j \Rightarrow C^n_\approx \supseteq C^j_\approx \). Consider the sequence of all the time-clusters \(C^1_\approx, C^2_\approx, \ldots \). We construct a subsequence \(C^m_\approx \) of the sequence \(C^n_\approx, n \in \mathbb{N} \) as follows. Take \(C^1_\approx \); if \(C^1_\approx \) is a stabilizing cluster, then we stop, and the subsequence is chosen. Assume a subsequence \(C^1_\approx, \ldots, C^m_\approx \) is chosen. If \(C^m_\approx \) is not a stabilizing cluster, then there is a cluster \(C^k_\approx \), where, up to isomorphism, \(C^n_\approx \supseteq C^k_\approx \).

Take the \(\approx \)-smallest \(C^m_\approx \) with this property and set \(C^m_\approx := C^k_\approx \). Since \(C^m_\approx \supseteq C^{n+1}_\approx \), this procedure must terminate, and it terminates at a stabilizing cluster. \(\Box \)

We denote by \(C^a \) the \(\approx \)-smallest stabilizing cluster.

LEMMA 3.7.

If \(C^a \) is a stabilizing cluster, then \(\forall n, j \in \mathbb{N}, n, j \geq s \), the following holds. If \(C^n_\approx \) is isomorphic to \(C^j_\approx \) by a mapping \(f \), then \(\forall \beta \in \text{Sub}(A), \forall a \in C^n_\approx (\langle C^n_\approx, a \rangle \models_{V^\beta} \beta \iff \langle C^j_\approx, f(a) \rangle \models_{V^\beta} \beta) \).

Proof may be given by induction on the length of \(\beta \). The only non-trivial steps are the ones for the modal operations. If \(\beta \) is \(\Box _B \) or \(K_i _B \) for \(i \in I \) the claim holds by the induction hypotheses and the definition of isomorphism. Let \(\beta \) be \(\Box _B \). Assume \((C^n_\approx, a) \models_{V^\beta} \Box _B \). We can have 3 cases: (i) \(n = j \) where the proof is trivial, (ii) \(n < j \), and (iii) \(n > j \). If \(n < j \), \((C^n_\approx, a) \models_{V^\beta} \Box _B \) implies that for any \(b \in C^n_\approx \) \((b \models_{V^\beta} B) \). Since \(n < j \), \(C^n_\approx \supseteq C^j_\approx \) holds and \(\forall c \in C^j_\approx, (\langle M^2_{\approx k}, c \rangle \models_{V^\beta} B) \). Consequently \((M^2_{\approx k}, f(a)) \models_{V^\beta} \Box _B \) and \((C^j_\approx, f(a)) \models_{V^\beta} \Box _B \). The proof of the converse is similar to the case (iii) below. Consider the case (iii) when \(n > j \). Assume \((C^n_\approx, a) \models_{V^\beta} \Box _B \). This implies that, for any \(b \in C^n_\approx \), \((\langle M^2_{\approx k}, b \rangle \models_{V^\beta} B) \). Since \(n, j \geq s \) and \(C^a \) is the stabilizing cluster, for any \(C^n_\approx \in C^n_\approx \) there is some \(C^m_\approx \in C^n_\approx \) such that \(C^m_\approx \cong C^m_\approx \). Therefore by induction hypothesis we conclude \(\forall C^m_\approx \in \)}
Therefore by IH we have the set of all $C^1 \subseteq C^n$, $(C^m, c) \models \mathcal{V}_= B$. Then $(\mathcal{M}_{T_k}^{\mathcal{R}}, f(a)) \models \mathcal{V}_= \Box _B$ and $(C^1, f(a)) \models \mathcal{V}_= \square _B$. The proof of the converse is similar to the previous case. \qed

For any time-cluster C^n, where $n \geq s$, $[C^n]_{\mathcal{R}}$ is the set of all the time-clusters isomorphic to C^n: $\forall n, j \geq s [C^n]_{\mathcal{R}} := \{ C^n | C^n \cong C^j \}$. Take and fix, for any $[C^n]_{\mathcal{R}}$ a unique representative cluster C_n. Let $St := \bigcup_{n \geq s} C_n$ be the set of all the elements of such clusters. We define a new finite model as follows: $\mathcal{M}_{T_k}^{\mathcal{R}} := (W_{T_k}, R_{T_k}^{\mathcal{R}}, \ldots, R_{T_k}^{\mathcal{R}}, C_{\mathcal{R}})$, where $W_{T_k}^{\mathcal{R}} := \{ C^1, C^2, \ldots, C^n, St \}$, $\forall p \in \text{Sub}(A)$ $V^p := \{ a \in W_{T_k}^{\mathcal{R}} | a \in V^p(p) \}$, $\forall a, b \in W_{T_k}^{\mathcal{R}} \forall n, j \leq s ((a \in C^n & b \in C^j) \implies (aR^2 b \text{ iff } aR^n b))$, otherwise, if $n, j > s$, $R^s_{T_k}$ is a universal relation on St: $\forall a, b \in St (aR^s b)$. And $aR^s b$ iff $aR^n b$, $\forall i \in I aR^s b$.

Lemma 3.8. For any formula $\beta \in \text{Sub}(A)$ and, for any $a \in W_{T_k}^{\mathcal{R}}$, $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \beta$ iff $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \beta$.

Proof is given by induction on the length of β. The steps for the boolean operations are standard. Let β be $\Box _B$. Assume $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \Box _B$. Since $a \in C^n$ for some $n \in \mathbb{N}$, we have 2 cases: (A): $n \leq s$ and (B): $n > s$.

Consider (A). Then $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \Box _B$ implies that for all elements $b \in C^n$ $(\mathcal{M}_{T_k}^{\mathcal{R}}, b) \models \mathcal{V}_= B$. C^n belongs to $\mathcal{M}_{T_k}^{\mathcal{R}}$ by assumption. Let $C^n \subseteq \mathcal{M}_{T_k}^{\mathcal{R}}$ be the set of all \preceq-successors of C^n in $\mathcal{M}_{T_k}^{\mathcal{R}}$ and $C^n \subseteq (\mathcal{M}_{T_k}^{\mathcal{R}})$ be the set of all \preceq-successors of C^n in $\mathcal{M}_{T_k}^{\mathcal{R}}$. Then $C^n \subseteq (\mathcal{M}_{T_k}^{\mathcal{R}})$ implies $C^n \subseteq (\mathcal{M}_{T_k}^{\mathcal{R}})$.

Therefore by IH we have $\forall c \in C^n \subseteq (\mathcal{M}_{T_k}^{\mathcal{R}})$, $(\mathcal{M}_{T_k}^{\mathcal{R}}, c) \models \mathcal{V}_= B$, and so it follows $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \Box _B$.

Consider the case (B): $n \geq s$. Then $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \Box _B$ implies that $\forall b \in C^n$ $(\mathcal{M}_{T_k}^{\mathcal{R}}, b) \models \mathcal{V}_= B$. Consider all the clusters between C^n and C^n: by the definition of stabilizing cluster, each of them is isomorphic to some cluster belonging to C^n. Therefore, by Lemma 3.7 we have that $\forall c \in C^n (s \leq j \leq n \implies (\mathcal{M}_{T_k}^{\mathcal{R}}, c) \models \mathcal{V}_= B)$. So we have $\forall b \in C^n \subseteq (\mathcal{M}_{T_k}^{\mathcal{R}}, b) \models \mathcal{V}_= B$. Since $St \subseteq C^n$, $\forall c \in St (\mathcal{M}_{T_k}^{\mathcal{R}}, c) \models \mathcal{V}_= B$ holds. Applying IH we conclude $\forall c \in St (\mathcal{M}_{T_k}^{\mathcal{R}}, b) \models \mathcal{V}_= B$ and it follows $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \Box _B$.

Assume now that $(\mathcal{M}_{T_k}^{\mathcal{R}}, a) \models \mathcal{V}_= \Box _B$. Since $a \in C^n$ for some $n \in \mathbb{N}$, we still have 2 cases: (C): $n \leq s$ and (D): $n > s$. In the case (C), when
A statement is given, and the proof is divided into several cases. For each case, a new model is constructed by dropping some elements from the previous model. The induction hypotheses are applied to conclude the statements.

For any formula β, the analogous cluster for β is immediate because the relations $\forall T$ and K are the same in M_{Tc} and M_{Tc}^B. By Lemma 3.7, we have $\forall C^m \in [C_2^m] \forall C^m \in C^m$, $(M_{Tc}, b) \models V = B$ and so we can conclude $\forall c \in C^m$, $(M_{Tc}, c) \models V = B$. Consequently $(M_{Tc}, a) \models V = B$.

Consider now the case (D): $n > s$. $(M_{Tc}, a) \models V = B$ implies that $\forall b \in St (M_{Tc}, b) \models V = B$, because R_{Tc} is an equivalence relation on $St \times St$. The rest of the proof for this case is similar to the final part of the case (C).

The inductive step for the case when β is $\Box \beta$ or β is $K_i \beta$, $i \in I$ is immediate because the relations R^m_{Tc} and R^B_{Tc} are the same in M_{Tc}^m and M_{Tc}^B.

Thus, by this lemma, the model, M_{Tc}, is finite and refutes the formula A. Since the number of elements in this model is not effectively bounded, we do not have yet decidability of the logic $L(Tc)$. Below we will construct a new model by dropping some \preceq-clusters from M_{Tc}.

For any sub-formula β of A, C_2 is the \preceq-maximal \preceq-cluster among C_2, C_2^m, \ldots, C_2 s.t. $\exists b \in C_2(M_{Tc}, b) \models V = B$ if such cluster exists. C_{\preceq} is the analogous cluster for \preceq. The new model is as follows:

$$W_{Tc} := \bigcup_{\beta \in \text{Sub}(A)} C_{\beta} \cup \bigcup_{\beta \in \text{Sub}(A)} C_{\preceq \beta} \cup \text{St},$$

$$M_{Tc} := (W_{Tc}, R^c_{Tc}, R^2_{Tc}, \ldots, R^n_{Tc}, V^c)$$

where: $\forall p \in \text{Sub}(A)$ $V^c(p) := \{a \in W_{Tc} \mid a \in V^c(p)\}$, $\forall a, b \in W_{Tc}$, $\forall R_\xi \in \{R_\xi, R_\xi, R_1, \ldots, R_\xi\}$, $a R_\xi b$ iff $a R^B_{\xi} b$.

Lemma 3.9. For any formula $\beta \in \text{Sub}(A)$, for any element $a \in W_{Tc}$, $(M_{Tc}, a) \models V = B$ if $a R_{\xi} b$.

$(M_{Tc}, a) \models V = B$. The new model is as follows:
Proof is by induction on the length of β. Evidently we only need to consider the steps for modal operations. If β is $\Box_2 B$ or β is $K_i B$, the steps are evident because all the relations R^F_\sim and R^F_i are the same in $M^F_{T_K}$ and $M^B_{T_K}$. Consider the case when β is $\Box_2 B$ or β is $K_i B$. If $(M^F_{T_K}, a) \forces_{VF} \Box_2 B$ then $\forall b \in W^F_{T_K} (a R_\sim b \implies (M^F_{T_K}, b) \forces_{VF} B)$. Since $W^F_{T_K} \subseteq W^B_{T_K}$, by induction hypothesis we have $\forall c \in W^F_{T_K} (a R_\sim b \implies (M^F_{T_K}, b) \forces_{VF} B)$ and so $(M^F_{T_K}, a) \forces_{VF} \Box_2 B$.

If $(M^F_{T_K}, a) \not\models_{VF} B$ then there is an element $b \in W^F_{T_K}$ such that $a R_\sim b$ and $(M^F_{T_K}, b) \not\models_{VF} B$.

If $b \in St$, then clearly $(M^F_{T_K}, b) \not\models_{VF} B$ and $(M^F_{T_K}, a) \not\models_{VF} B$. Otherwise there is an R_\sim-maximal cluster $C_{\sim}B$ among $C^1_\sim, C^2_\sim, \ldots, C^s_\sim$ and a $c \in C_{\sim}B$ such that $(M^F_{T_K}, c) \not\models_{VF} B$. Since $C_{\sim}B$ belongs to $W^F_{T_K}$ by IH we conclude $(M^F_{T_K}, c) \not\models_{VF} B$. Since $a R_\sim b$, it follows $(M^F_{T_K}, a) \not\models_{VF} \Box_2 B$.

So, by this lemma A is refuted by the model $M^F_{T_K}$ with effectively bounded size. Take an arbitrary frame F with the structure as the frame of a model $M^F_{T_K}$. It is easy to show that F is a p-morphic image of a frame T_K based on \sim-clusters from the \sim-linear part of F which are \sim-followed by an infinite chain of \sim-clusters subsequently doubling the remaining part of \sim-clusters from F. Therefore all theorems of $L(T_K)$ are true in F, and we have the following

Theorem 3.10. The logic $L(T_K)$ has the finite model property with computable size of refuting models, and hence $L(T_K)$ is decidable.

References

v.rybakov@mmu.ac.uk