Joanna Grygiel

ON GLUING OF LATTICES

Abstract

We compare the operation on lattices given by A. Wroński to the operation of gluing of bounded lattices according to a skeleton introduced by Ch. Herrmann. We prove that these operations differ in many respects. In particular, sum-irreducible lattices with respect to these operations do not coincide.

The operation of gluing of lattices introduced by Wroński in [10] was a generalization of the operation considered by Troelstra in [9], which special case is the well known operation of adding the top element (the so called "mast") to a lattice (see, Jaśkowski [7]).

Let $K_1 = \langle K_1, \leq_1 \rangle$ and $K_2 = \langle K_2, \leq_2 \rangle$ be lattices such that $K_1 \cap K_2$ is a filter in K_1 and an ideal in K_2 and the orderings \leq_1 and \leq_2 coincide on $K_1 \cap K_2$. Then $K_1 \oplus K_2 = \langle K_1 \cup K_2, \leq \rangle$, where \leq is the transitive closure of $\leq_1 \cup \leq_2$, is a lattice which we are going to call a W-sum of K_1 and K_2.

It is said that a lattice K is W-irreducible iff there are no proper sublattices K_1 and K_2 of K such that $K = K_1 \oplus K_2$.

Theorem 1. For every finite lattice K the following conditions are equivalent:

1. K is W-irreducible;
2. $\bigvee a \in K \setminus \{0\}$ $\forall N(a)$;
3. $\bigwedge a \in K \setminus \{1\}$ $\forall N(a)$.

where $N(a) = \{b \in K; a$ and b are incomparable\}$ and $0, 1$ denote the smallest and the greatest element of K, respectively.
Proof.

1. \Rightarrow 2.

Suppose that $x = \bigvee N(a) \lor a < 1$ for some $a > 0$. Let $K_1 = [0, x]$, $K_2 = [a, 1]$. Since $x \geq a$, we get $K_1 \cap K_2 = [a, x]$, which is a filter in K_1 and an ideal in K_2. Thus $K_1 \oplus K_2$ is a sublattice of the lattice K.

On the other hand, let $y \in K$. If $y \geq a$ then $y \in K_2$. If $y \leq a$ then $y \leq x$ and hence $y \in K_1$. In the case when a and y are incomparable we have $y \in K_1$. It means that $K_1 \oplus K_2 = K$ and both K_1 and K_2 are proper sublattices of K, which contradicts the assumption.

2. \Rightarrow 1.

Suppose that $K_1 \oplus K_2 = K$, where K_1 and K_2 are proper sublattices of K. Then $K_1 = [0, x]$, $K_2 = [y, 1]$, for some $y \leq x < 1$. If $N(y) = \emptyset$ then $\bigvee N(y) \lor y = y < 1$. Let $a \in N(y)$. Then $a \in K_1$ and hence $a \leq x$. It yields $\bigvee N(y) \lor y \leq x < 1$.

It proves the equivalence of 1. and 2.

The proof of the equivalence of 1. and 3. is analogous. □

Corollary 1. Every finite complementary lattice is W-irreducible.

Corollary 2. A finite distributive lattice D is W-irreducible iff D is a Boolean lattice.

It is easy to notice that every finite lattice can be represented as a W-sum of its W-irreducible intervals. This observation together with Corollary 2 yields the following theorem, proved by Kotas, Wojtylak in [4]:

Theorem 2. Every finite distributive lattice can be represented as a W-sum of its Boolean intervals.

Every representation of a finite lattice K as a W-sum of its W-irreducible intervals will be called a W-representation of K. There are infinitely many W-representations of a given lattice K but it is obvious that all maximal W-irreducible intervals of K must occur in each of them. It is not true, however, even in the distributive case, that there is always a W-representation of K containing only maximal W-irreducible intervals of K.

If it is possible to represent a lattice K as a W-sum of its maximal W-irreducible intervals without repeating components or taking their subintervals, then we call that representation a scarce W-representation (or a
scarce decomposition) of \(K \) (see [3]). In the case of a finite distributive lattice \(D \) the components of the scarce W-representation coincide with the components of the Herrmann gluing of the lattice \(D \).

The operation of gluing of lattices was introduced by Herrmann in [6] as some generalization of the algebraic operation on lattices given by Dilworth and Hall in [5]. The definition of this gluing can be formulated as follows:

Let \(K = \langle K, \leq_K \rangle \) be a bounded lattice and \(\{ L_x \}_{x \in K} \), a family of bounded lattices such that for every \(x, y \in K \):

- if \(x \prec y \) (\(y \) covers \(x \)) then \(L_x \cap L_y \neq \emptyset \);
- if \(x \leq_K y \) and \(L_x \cap L_y \neq \emptyset \) then \(L_x \cap L_y \) is a filter of \(L_x \) and an ideal of \(L_y \) and the orderings \(\leq_x \) and \(\leq_y \) coincide on \(L_x \cap L_y \);
- \(L_x \cap L_y = L_x \lor y \cap L_y \).

Then \(L = \langle \bigcup_{x \in K} L_x, \leq \rangle \), where \(\leq \) is the transitive closure of \(\bigcup_{x \in K} \leq_x \), is a lattice called \(K \)-gluing of the family \(\{ L_x \}_{x \in K} \). The lattice \(K \) is said to be the skeleton of this gluing.

It is obvious that the W-sum of two components is a special case of the Herrmann gluing, namely, the gluing with the skeleton being two-element Boolean algebra \(B_2 \). In general, W-sum of lattices can be considered as an iteration of this \(B_2 \)-gluings.

However, we are going to show that these two operations do not coincide.

Herrmann [6] proved that every finite modular lattice \(M \) is a \(K \)-gluing of its maximal atomic intervals for some lattice \(K \), which is called the skeleton of the lattice \(M \). It means, in particular, that every finite distributive lattice \(D \) is a \(K \)-gluing of its maximal Boolean intervals for some skeleton \(K \) (which will be called the skeleton of \(D \)). Hence, the components of the \(K \)-gluing and a W-representation of a finite distributive lattice coincide if the W-representation is a scarce W-representation of \(D \).

Example 1. There is no scarce W-representation of the free three-generated distributive lattice \(F_3(D) \) in Figure 1 (see [3]).

Thus, there is no W-representation of \(F_3(D) \) with components coinciding with the \(K \)-gluing of \(F_3(D) \). The skeleton \(K \) of \(F_3(D) \) is a diamond (see Figure 2(b)).

In the case of non-distributive lattices differences between these two operations of gluing of lattices are more noticeable.
Example 2. The lattice \mathcal{M} in Figure 2(a) is modular and hence it is the K-gluing of five components. Figure 2(b) shows the skeleton K of \mathcal{M}. On the other hand, by Theorem 1, \mathcal{M} is W-irreducible.

Example 3. The lattice \mathcal{S} in Figure 3 (\mathcal{S} is not modular) can be represented as the W-sum of four components:

$$\mathcal{S} = (S_0 \oplus S_1) \oplus (S_2 \oplus S_3),$$

where $S_0 = \{0, a, b, c\}$, $S_1 = \{c, b, e, f, h\}$, $S_2 = \{a, b, d, e, g\}$, $S_3 = \{e, h, g, 1\}$.

However, there is no lattice \mathcal{K} such that \mathcal{S} is the \mathcal{K}-gluing of the family $\{S_0, S_1, S_2, S_3\}$ since the family does not fulfill the third condition of Herrmann gluing.

References

Institute of Mathematics
Pedagogical University
Al.Armiñ Krajowej 13/15
Częstochowa 42-201
e-mail: j.grygiel@wsp.czest.pl