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A NORMALIZATION THEOREM FOR P -W

Abstract

In this note, we consider sequent calculus for an implicational non-commutative

intuitionistic logic P -W , or equivalently called BB′I. We shall prove the Normal-

ization theorem for LBB′I , which Komori used in his syntactic proof of Martin’s

theorem, known as a solution to the P −W problem.

1. Introduction

In this note, we consider an implicational non-commutative intuitionistic
logic P -W or equivalently called BB′I, whose axioms are

(B) (b → c) → ((a → b) → (a → c)),
(B′) (a → b) → ((b → c) → (a → c)),
(I) a → a,

with substitution and modus ponens as rules.

The P -W problem is a problem asking the truth of the following state-
ment:

• If α → β and β → α are provable in P -W , then α = β.
Although the system P -W is extremely simple, the P -W problem

turned out to be very challenging, and had left open for more than twenty
years since Belnap had originally asked it (p. 95, [1]), until E.P. Martin
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solved it affirmatively [5]. Martin solved the problem by showing the state-
ment below known as Powers’ conjecture: Powers showed its equivalence
to the P -W problem [6], essentially by obtaining the theory of combinators
generated from B, B′ and I.

• No formula of the form α → α is provable in P -W without using the
axiom I.

Since Martin’s solution was a semantical proof, finding a syntactic
proof of the problem attracted some researchers. The first syntactic proof
in Hilbert-style formal system was obtained by Kron [4]. The first syntactic
proof in sequent calculus, called LBB′I , was outlined by the author in 1994,
and later improved and published by Komori in 1996 [3]. While the author
showed the original statement for the P -W problem directly, which in fact
resulted in a lot of complications in the proof, Komori successfully proved
the statement of Powers in a simpler manner. Since Komori quoted in his
proof a lemma due to the author called a Normalization theorem for LBB′I
(p. 412, [3]), without proof, we shall prove it in this note. Let α be a
formula with the rightmost variable p in the following form:

α = α1 → (α2 → (· · · → (αn−1 → (αn → p)) · · ·)).

The Normalization theorem for LBB′I states, for a given provable sequent
∆, α, Γ ⇒ γ, that there exists a canonical cut-free proof whose initial part
consists of n successive applications of the rule of the left introduction of
implication for each formula αi (1 ≤ i ≤ n). This is a consequence derived
in P -W from the permutability between the logical rules involved with αi’s
and those not involved with.

Finally, we note that the first syntactic proof of Martin’s theorem,
based on simply typed λ-calculus, is proved in a forthcoming paper by
Hirokawa, Komori and the author [2].

2. Normalization theorem for BB’I

Notation. Let Γ,∆, Σ... be sequences of formulas in sequents. As usual,
a merge of the sequences Γ and ∆ is a new sequence consisting of the
members of Γ and ∆ as multisets, in which both Γ and ∆ preserve their
original orders. A guarded merge of Γ and ∆, denoted by Γ ◦∆, is one of
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the merges obtained from Γ and ∆, in which the rightmost formula is the
rightmost formula of ∆.

Definition 2.1. We define a system LBB′I as follows:

Axioms: p ⇒ p, where p is a propositional variable.

Rules of inference:

Γ ⇒ α ∆, α, Σ ⇒ γ

∆ ◦ Γ, Σ ⇒ γ
(cut)

where Γ 6= ∅ or ∆ = ∅,
Γ, α ⇒ β

Γ ⇒ α → β
(→ right)

Σ ⇒ α ∆, β, Γ ⇒ γ

∆ ◦ ({α → β} ◦ Σ),Γ ⇒ γ
(→ left)

where Γ 6= ∅.

We note that the cut-elimination theorem holds for LBB′I (p. 62, [1]
and p. 410, [3]).

Notation. We denote by αi a subformula

αi → (· · · → (αn−1 → (αn → p)) · · ·) (1 ≤ i ≤ n).

Now we prove the main theorem in this note.

Theorem 2.2. (Normalization theorem for LBB′I .) Let α be a formula
with the rightmost variable p in the following form:

α = α1 → (α2 → (· · · → (αn−1 → (αn → p)) · · ·)).

For a given sequent ∆, α, Γ ⇒ γ provable in LBB′I , there exists a cut-free
proof of the sequent such that:
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...
...

Σn ⇒ αn ∆n, p, Γn ⇒ p
...

...
Σi ⇒ αi ∆i, αi+1, γi ⇒ p

∆i−1, αi, Γi−1 ⇒ p (→ left)

...
...

Σ1 ⇒ α1 ∆1, α2,Γ1 ⇒ p
∆0, α, Γ0 ⇒ p (→ left)

...
∆, α, Γ ⇒ γ,

where

(1) A part of the proof called as a tail:

∆0, α, Γ0 ⇒ p
...

∆, α, Γ ⇒ γ

does not contain any inference rule in which α is principal.

(2) ∆i−1, αi, Γi−1 ≡ ∆i ◦ ({αi} ◦ Σi),Γi (1 ≤ i ≤ m).

Proof. We call the proof of ∆, α, Γ ⇒ γ above a normalized proof with
respect to α. We make an induction on the length of the cut-free proof
of ∆, α, Γ ⇒ γ. When the length is 1, the sequent is an axiom, and the
claim clearly holds. For the induction step, we argue according to the last
inference of the cut-free proof of ∆, α, Γ ⇒ γ. The only non-trivial case is
when the last inference is the following (remember that γ is a variable):

...
...

Σ1 ⇒ α1 ∆′, α2,Γ′ ⇒ γ

∆′ ◦ {α} ◦ Σ1, Γ′ ⇒ γ
(→ left),

where ∆, α, Γ ≡ ∆′ ◦ ({α} ◦ Σ1), Γ′.

By the induction hypothesis applied to ∆′, α2,Γ′ ⇒ γ, we have a trans-
formation and its normalized proof with respect to α2



A normalization theorem for P-W 87

...
...

Σ2 ⇒ α2 ∆2, α3, Γ2 ⇒ p
∆1, α2,Γ1 ⇒ p

...
∆′, α2,Γ′ ⇒ γ

with a tail we call P1 of the following form:

∆1, α2, Γ1 ⇒ p
...

∆′, α2,Γ′ ⇒ γ.

Now we first derive ∆1 ◦ ({α} ◦ Σ1),Γ1 ⇒ p by a proof
...

...
Σ1 ⇒ α1 ∆1, α2,Γ1 ⇒ p

∆1 ◦ ({α} ◦ Σ1), Γ1 ⇒ p
.

By applying the inference rules in P1 to ∆1 ◦ ({α} ◦ Σ1),Γ1 ⇒ p, we obtain
∆′ ◦ ({α} ◦ Σ1), Γ′ ⇒ γ, which is equal to ∆, α, Γ ⇒ γ. Hence the claim
follows.
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