NEW SINGLE AXIOMS FOR POSITIVE IMPLICATION

The first single axiom for the implicational fragment of the intuitionistic sentential calculus was discovered by C. A. Meredith who, in [1], uses substitution and detachment to derive the Tarski-Bernays base \(CCpCqrCCpqCpr \) and \(CpCqp \) in nineteen steps from

\[M_1 \cdot CCCpqrCsCCqCrtCqt \]

Thomas [2] later reduced the number of detachments by two.

Write \(X \) for \(CCCpqr \), \(Y \) for \(s \), and \(Z \) for \(CqCrt \) so that \(M_1 \) is \(CXCYCZCqt \), and consider the permutations of \(M_1 \) that result from interchanging these in pairs:

\begin{align*}
\text{M2}. & \ CXCYCXCqt = CCqCrtCsCCCpqrCqt \\
\text{M3}. & \ CYCZXCqt = CqCrtCCCpqrCCqCrtCsCqt \\
\text{M4}. & \ CXCZCYCqt = CCCpqrCCqCrtCsCqt \\
\text{M5}. & \ CZXCYCqt = CCqCrtCCCpqrCcCqt \\
\text{M6}. & \ CYCXZCqt = CsCCCpqrCCqCrtCqt.
\end{align*}

THEOREM. Each of M1-M6 is a single axiom for positive implication.

For proof, we derive each from its predecessor, and finally complete the circle by deriving \(M_1 \) from \(M_6 \). Proofs are abbreviated by writing \(Dm.n \) for the most general result of detaching formula \(n \), or a substitution instance of it, from formula \(m \), or a substitution instance of it.
The derivation from M_1 of M_2 is quite short:

\[M_1 = 1. \quad CCCpqrCsCCqCrtCqt \]
\[D1.1 = 2. \quad CpCCqCCrCCsCqCstuCqu \]
\[D2.1 = 3. \quad CCpCCqCCrCpCrsCrtCpt \]
\[D3.1 = 4. \quad CCCpqrCCqCrsCqs \]
\[D3.2 = 5. \quad CCpCqrCqCstCpsCr \]
\[D5.4 = M_2. \quad CCqCrtCstCCCpqrCqt \]

And the route from M_2 to M_3 is one step shorter:

\[M_2 = 1. \quad CCqCrtCstCCCpqrCqt \]
\[D1.1 = 2. \quad CpCCCqCrCstuCCrCstCCCrsCrt \]
\[D1.2 = 3. \quad CpCCCqCrCstCqCCrCstuCtv \]
\[D3.1 = 4. \quad CCCpqCCrCsCtvCqCCsCstuCCCustCsu \]
\[D4.2 = M_3. \quad CsCCqCrtCCCpqrCqt \]

A bit more involved is the derivation from M_3 of M_4:

\[M_3 = 1. \quad CsCCqCrtCCCpqrCqt \]
\[D1.1 = 2. \quad CCpCqrCCCpqCpr \]
\[D2.1 = 3. \quad CCCpqCrCstCqCCrCstuCrt \]
\[D3.2 = 4. \quad CCCpqCrrCstCpqCstpq \]
\[D3.3 = 5. \quad CCCpqCrCstCCqCptCpr \]
\[D5.5 = 6. \quad CCCpqCrCstCtvCqCCsCstuCCCustCsu \]
\[D6.4 = M_4. \quad CCCpqCrCrtCstCqt \]

The path from M_4 to M_5 is more complicated:

\[M_4 = 1. \quad CCCpqCrCrtCstCqt \]
\[D1.1 = 2. \quad CCpCCCqCrCstCqCqrtCpu \]
\[D1.2 = 3. \quad CCCCCqCprCcCqCtvCcCCCpCqrCstCtv \]
\[D2.2 = 4. \quad CpCCCqCrCstCrsCstuCqu \]
\[D4.1 = 5. \quad CCpCCCqCprCstCqrtCpt \]
\[D5.4 = 6. \quad CpCCCqCprCqr \]
\[D6.1 = 7. \quad CCCCCqCrsCCrCstuCrtCtvCpv \]
\[D7.6 = M_5. \quad CCqCrtCCCpqrCstCqt \]
Lengthier yet is the deduction from \(\text{M5} \) of \(\text{M6} \):

\[\text{M5} = 1. \quad \text{CcCqCrtCCCpqrsCsCq} \]
\[\text{D1.1 = 2.} \quad \text{CCCpqrsCrCstCCursCCqCrtCqs} \]
\[\text{D1.2 = 3.} \quad \text{CCCpqrsCqCrtCCursCCqCrtCqs} \]
\[\text{D3.1 = 4.} \quad \text{CpCCCpqrsCqCrtCCursCCqCrtCqs} \]
\[\text{D2.3 = 5.} \quad \text{CpCCCpqrsCqCrtCCursCCqCrtCqs} \]
\[\text{D4.1 = 6.} \quad \text{CpCCCpqrsCqCrtCCursCCqCrtCqs} \]
\[\text{D5.1 = 7.} \quad \text{CpCCCpqrsCqCrtCCursCCqCrtCqs} \]
\[\text{D6.4 = 8.} \quad \text{CpCCCpqrsCqCrtCCursCCqCrtCqs} \]
\[\text{D7.7 = 9.} \quad \text{CpCCCpqrsCqCrtCCursCCqCrtCqs} \]
\[\text{D8.9 = \text{M6}.} \quad \text{CpCCCpqrsCqCrtCqs} \]

The following derivation from \(\text{M6} \) of Meredith’s known single axiom, \(\text{M1} \), thus completes the proof of the theorem:

\[\text{M6} = 1. \quad \text{CsCCCpqrsCqCrtCqs} \]
\[\text{D1.1 = 2.} \quad \text{CCCpqrsCqCrtCqs} \]
\[\text{D2.1 = 3.} \quad \text{CpCCCpqrsCqCrtCqs} \]
\[\text{D2.2 = 4.} \quad \text{CpCCCpqrsCqCrtCqs} \]
\[\text{D3.1 = 5.} \quad \text{CpCCCpqrsCqCrtCqs} \]
\[\text{D4.1 = 6.} \quad \text{CpCCCpqrsCqCrtCqs} \]
\[\text{D6.4 = 8.} \quad \text{CpCCCpqrsCqCrtCqs} \]
\[\text{D7.7 = 9.} \quad \text{CpCCCpqrsCqCrtCqs} \]
\[\text{D8.9 = \text{M1}.} \quad \text{CpCCCpqrsCqCrtCqs} \]

In view of the foregoing, one might wonder if still more single axioms could be obtained by interchanging the penultimate letter \(q \) with \(X, Y, \) or \(Z \) in any of \(\text{M1-M6} \). The reader may confirm that the answer is negative by verifying that all eighteen formulas obtainable in this fashion are tautologies of the matrix:

\[
\begin{array}{c|ccc}
C & 1 & 2 & 3 \\
\hline
*1 & 1 & 3 & 3 \\
2 & 1 & 3 & 1 \\
3 & 1 & 1 & 1
\end{array}
\]

though the positive thesis \(Cpp \) obviously is not since \(C22 = 3 \).
References

Department of Philosophy
Purdue University
West Lafayette, Indiana 47907-1360
U. S. A.