1. Introduction

Let \(Q-L \) be the least predicate extension of a normal extension \(L \) of \(S4 \) and \(BF \) be the Barcan formula \(\forall x \Box A(x) \supset \Box \forall x A(x) \). Ghilardi [3] showed that it is rare that \(Q-L \) is complete with respect to Kripke semantics.

On the other hand, if \(L \) is a subframe logic with the finite embedding property, we can show the completeness of \(Q-L + BF \) by the method of canonical models (cf. Lemma 3 [2], Theorem 3.9 [5]).

It is natural to ask whether \(Q-L + BF \) is complete if \(L \) is a subframe logic without finite embedding property.

Cresswell [4, chapter 14] described a proof due to Fine of the incompleteness of \(Q-S4M = Q-S4 + \Box \exists p \supset \exists \Box p + BF \) and asked whether \(Q-S4.3.1 + BF \) is complete or not.

In this note, we solve the problem negatively by proving the following theorem since \(Q-S4.3.1 + BF \) is in this interval.

Theorem 1. The modal predicate logics between \(Q-S4.1.4 \) and \(Q-S4.3Grz \) +BF are Kripke incomplete, where \(S4.1.4 = S4 + \Box(\Box (p \supset \Box p) \supset p) \supset (\Box \Box (p \supset p) \supset p) \supset p \) and \(S4.3Grz = S4.3 + \Box(\Box (p \supset \Box p) \supset p) \supset p \).

Throughout this note, we use the following terminology and notations. A preorder \(M = (M, R) \) is a reflexive and transitive binary relation. For
each \(u \in M \), the set \(\{ x \in M \mid xRu \} \) is denoted by \(u \downarrow \) and for each subset \(U \subseteq M \), \(U \downarrow = \bigcup_{u \in U} u \downarrow \). It is clear the relation defined by \(uRv \) and \(vRu \) is an equivalence relation. We call the equivalence class for it a cluster.

A modal propositional frame is a pre-order \(M \) and a modal predicate frame is the pair \(\langle M, U \rangle \) of a pre-order \(M = \langle M, R \rangle \) and a domain mapping \(U \). We denote \(\langle M, D \rangle \) instead of \(\langle M, U \rangle \) if \(U \) is a constant mapping \(U(u) = D(u \in M) \), and we call \(\langle M, D \rangle \) is of constant domain.

Let \(\langle M, U \rangle \) be a modal predicate frame and \(L \) a language of modal predicate logic. \(L[U(u)] \) denotes the language obtained from \(L \) by adding all the constant symbols \(c \) for \(c \in U(u) \). A valuation \(\models \) on \(\langle M, U \rangle \) is a binary relation between each \(a \in M \) and atomic \(L[U(a)] \) sentences. We can extend \(\models \) to the relation between each \(a \in M \) and \(L[U(a)] \) sentences in the usual way. We also denote the extended relation by \(\models \). A modal predicate model is the triple \(\langle M, U, \models \rangle \), where \(\langle M, U \rangle \) is a frame and \(\models \) is a valuation on \(\langle M, U \rangle \).

A modal predicate sentence \(A \) is said to be valid in a modal predicate frame \(\langle M, U \rangle \) if \(a \models A \) holds for every \(a \in M \) and every valuation \(\models \) on \(\langle M, U \rangle \), and a modal predicate logic \(L \) is said to be

Our proof of Theorem 1 is a modification of that for \(Q\text{-}S4M + BF \) in [4]. That is, we show that the formula

\[
A = \Box(\Box\forall x(p(x) \lor \Box p(x)) \lor \forall xp(x)) \lor (\Box\Box\Box\forall xp(x) \lor \forall xp(x)),
\]

has the following properties.

(a) \(A \) is valid in every modal predicate frame validating \(Q\text{-}S4.1.4 \).
(b) \(A \) is not a theorem of \(Q\text{-}S4.3Grz + BF \).

Note that \(A \) is obtained from the axiom of \(S4.1.4 \) by inserting some quantifiers \(\forall x \). This fact enables us to construct a valuation refuting the axiom of \(S4.1.4 \) from that for \(A \), and (a) follows from this.

On the other hand, \(S4.1.4 \) is the subframe logic axiomatized by the subframe formula for the propositional frame \(M_0 = \langle \{0,1,2\}, R_0 \rangle \) in Figure 1.
In the proof of (b), we use a Kripke model whose frame part is obtained from the frame M_0 by substituting the proper cluster by an infinite chain. This suggests that we can prove the incompleteness of other subframe logics without the finite embedding property by a similar method.

2. Proof of (a)

Firstly, we prove S4.1.4 is a subframe logic (cf. Fine [2]). A partial function f from M to N is said to be a subreduction if it is a p-morphism from its domain to N.

Lemma 2. Let $\langle M, U \rangle$ be a modal predicate frame. Then, the following are equivalent.

1. S4.1.4 is valid in $\langle M, U \rangle$.
2. There is no subreduction from M to the frame M_0 in Figure 1.

Proof. \Rightarrow Suppose there is a subreduction f from M to M_0. We define a valuation on $\langle M, U \rangle$ as follows:

$$u \models p \iff u \in f^{-1}(1) \text{ or } u \not\in f^{-1}(0) \downarrow.$$

Pick $u_0 \in f^{-1}(0)$. We show $u_0 \not\models \Box(\Box(p \supset \Box p) \supset p) \supset (\Box \Box \Box p \supset p)$. First note that $u \models \Box p$ if and only if $u \not\in f^{-1}(0) \downarrow$ since the complement of $f^{-1}(0) \downarrow$ is upward closed.

So, $u \models \Box(\Box(p \supset \Box p) \supset p)$ if and only if $u \not\in f^{-1}(0) \downarrow$ since $v \not\models p \supset \Box p$ for $v \in f^{-1}(1)$. Hence, $u \models \Box(\Box(p \supset \Box p) \supset p)$ for every u and $u_0 \models \Box(\Box(p \supset \Box p) \supset p)$.
\(\Box p \supset p \).

On the other hand, since every \(u \in f^{-1}(0) \) is below some \(v \in f^{-1}(2) \), \(u \models \Diamond \Box p \) holds. Since \(u \models \Box p \) holds for every \(u \notin f^{-1}(0) \), \(u_0 \models \Box \Box \Box p \).

Therefore, \(u_0 \not\models \Box (\Diamond (p \supset \Box p)) \supset (\Box \Diamond \Diamond p \supset p) \).

\(\Leftarrow \) Suppose \(u_0 \models \Box (\Diamond (p \supset \Box p)) \supset (\Box \Diamond \Diamond p \supset p) \) and \(u_0 \not\models p \). We define a partial function \(f \) as follows:

\[
 f(u) = \begin{cases}
 0 & \text{if } u_0Ru \text{ and } u \not\models p \\
 1 & \text{if } u_0Ru \text{ and } u \not\models p \supset \Box p \\
 2 & \text{if } u_0Ru \text{ and } u \models \Box p \\
 \text{undefined} & \text{otherwise}
\end{cases}
\]

We show \(f \) is a subreduction.

To prove that \(uRv \) implies \(f(u)Rf(v) \) for \(u, v \in \text{dom}(f) \), we may assume \(f(u) = 2 \) and \(f(v) \neq 2 \). \(uRv \) cannot holds since \(u \models \Box \Box \Box p \) and \(v \not\models \Box p \). Hence, \(f \) is order preserving.

Therefore \(f \) is a subreduction. \(\quad \text{q.e.d.} \)

If \(A \) is not valid in \(\langle M, U \rangle \), then there is a valuation \(\models \) on \(\langle M, U \rangle \), \(u_0 \in M \) and \(a_0 \in U(u_0) \) such that the following hold:

\[
\begin{align*}
 u_0 &\models \Box (\Diamond \forall x(p(x) \supset \Box p(x)) \supset \forall xp(x)), \\
 u_0 &\models \Box \Diamond \forall xp(x), \\
 u_0 &\not\models p(a_0).
\end{align*}
\]

We claim we can inductively define \(u_n, v_n \in M \) (\(n \geq 1 \)) and \(a_n \in U(v_n) \) (\(n \geq 1 \)) satisfying the following:

\[
\begin{align*}
 u_{n-1} &\ R \ v_n \ R \ u_n, \\
 v_n &\models p(a_n), \\
 v_n &\not\models \Box p(a_n), \\
 u_n &\not\models p(a_n).
\end{align*}
\]

Suppose \(u_{n-1} \) and \(a_{n-1} \) are defined. Since \(u_{n-1} \not\models p(a_{n-1}) \) implies \(u_{n-1} \not\models \forall xp(x) \), we can pick \(v_n \) and \(a_n \in U(v_n) \) such that \(u_{n-1} \ R \ v_n \) and
\(v_n \not\models p(a_n) \supset \Box p(a_n)\) by \(u_0 \mathcal{R} u_{n-1}\) and (1). By (6), there exists \(u_n\) such that \(v_n \mathcal{R} u_n\) and \(u_n \not\models p(a_n)\).

By (2), there exists \(w_n\) such that \(v_n \mathcal{R} w_n\) and \(w_n \models \Box \forall x p(x)\) for every \(n\).

Note that \(u_n \neq v_n\) since \(v_n \models p(a_n)\) and \(u_n \not\models p(a_n)\). Similarly, \(w_m \mathcal{R} v_n\) for every \(m, n\) since \(v_n \not\models \Box p(a_n)\) and \(w_m \models \Box \forall x p(x)\).

Case 1) There exist \(v_m = v_n\) for some \(m < n\).

In this case, \(v_m \mathcal{R} u_m \mathcal{R} v_n = v_m\) holds. So, we can define a subreduction \(f\) as follows:

\[
\text{dom}(f) = \{u_m, v_m, w_m\}, f(v_m) = 0, f(u_m) = 1, f(w_m) = 2.
\]

Case 2) The elements of \(\{v_m\}\) are all distinct.

In this case, we can define a subreduction \(f\) as follows:

\[
\text{dom}(f) = \{v_n, w_n \mid n \geq 1\}, f(v_{2n-1}) = 0, f(v_{2n}) = 1, f(w_n) = 2.
\]

So, in both cases \(\langle \mathcal{M}, U \rangle\) does not validate \(S4.1.4\) by Lemma 2.

This completes the proof of (a).

3. Proof of (b)

In this section, \(\langle \mathcal{M}, D, \models \rangle\) denotes the Kripke model of constant domain defined as follows:

- \(\mathcal{M} = \langle \omega + 1, \leq \rangle\),
- \(D = \omega\),
- \(m \models p(m) \leftrightarrow n = m + 1\) for all \(m < \omega\) and \(n \in D\),
- \(\omega \models p(\omega)\) for all \(n \in D\).

Note that, if we delete the topmost element \(\omega\) from our models, we obtain a model essentially equal to that for \(Q\text{-SM} + BF\). We slightly change the valuation because the proof in [4] contains a minor error.\(^4\)

\(^4\)In fact, Lemma 14.12 in [4] does not hold for \(m = 0, n > 0\). A counter example is \(a = \exists x \Box \neg \psi(x)\).
Lemma 3. [cf. Lemma 14.12 [4]] Let $B(x_1, x_2, \ldots, x_k)$ be a formula with free variables x_1, x_2, \ldots, x_k.

Then, for every $m \leq n < \omega$ and k-tuples $(p_1, p_2, \ldots, p_k), (q_1, q_2, \ldots, q_k) \in D^k$ satisfying the condition

\[p_i \leq m, q_i \leq n \]

or

\[p_i - q_i = m - n, \]

then

\[m \models B(p_1, p_2, \ldots, p_k) \text{ if and only if } n \models B(q_1, q_2, \ldots, q_k). \]

Proof. By induction on the complexity of $B(x_1, x_2, \ldots, x_k)$. We only treat the case $B(x_1, x_2, \ldots, x_k)$ is of the form $\forall x B'(x, x_1, x_2, \ldots, x_k)$.

\Rightarrow) We prove the contraposition. Suppose

\[n \not\models \forall x B'(x, q_1, q_2, \ldots, q_n). \]

Then there exists $q \in D$ such that

\[n \not\models B'(q, q_1, q_2, \ldots, q_n). \]

Put

\[p = \begin{cases}
 m & (q \leq n) \\
 m + (q - n) & (q > n),
\end{cases} \]

Then, by induction hypothesis,

\[m \not\models B'(p, p_1, p_2, \ldots, p_n), \]

and

\[m \not\models \forall x B'(x, p_1, p_2, \ldots, p_n). \]

\Leftarrow) Change the role of m, p, p_1, \ldots, p_k and n, q, q_1, \ldots, q_k in the above case.

q.e.d.
Lemma 4. Every instance of S4.3Grz is true in $\langle M, D, \models \rangle$.

Proof. Since $\langle M, D \rangle$ is linear and of constant domain, $\Box(\Box p \supset q) \lor \Box(\Box q \supset p)$ and BF are valid in $\langle M, D \rangle$. So, it is enough to show the case $\text{Grz} = \Box(\Box p \supset \Box q) \supset p$.

Let $C = \Box(\Box B \supset \Box B) \supset B$ be an $L[D]$ instance of Grz and p_1, p_2, \ldots, p_k be the constant symbols occurring in B.

Put $N = \max\{p_1, p_2, \ldots, p_k\}$. Then, by Lemma 3, for every $N \leq m, n < \omega$ the following holds:

$m \models B \iff n \models B$.

Suppose C is not true at some $m < \omega$. Then there exists sequences $\{m_i\}$ and $\{n_i\}$ such that the following hold.

$m_i < n_i < m_i + 1 \ (i \in \omega)$,

$m_i \not\models B, n_i \models B, n_i \not\models 2B$.

This contradicts to Lemma 3. q.e.d.

To prove the assertion of (b), we have only to show $0 \not\models A$ by Lemma 4.

Since $n \models p(n + 1)$ and $n + 1 \not\models p(n + 1)$ for every $n < \omega$, $n \not\models \forall x(p(x) \supset \Box p(x))$. So, $n \models \Box \forall x(p(x) \supset \Box p(x)) \supset \forall x(p(x))$ holds. On the other hand, $\omega \models \forall x(p(x))$ implies $\omega = \Box \forall x(p(x) \supset \Box p(x)) \supset \forall x(p(x))$. Hence, $0 \models \Box(\Box \forall x(p(x) \supset \Box p(x)) \supset \forall x(p(x)))$ holds.

Moreover, since ω is the maximum in M, $0 \models \Box \Diamond \Box \forall x p(x)$ holds. Therefore $0 \not\models A$ by $0 \not\models \forall x p(x)$.

This completes the proof of (b).

References

Eiko Isoda
Department of Mathematics and Computer Science
Tsuda College
2-1-1 Tsuda-machi, Kodaira-shi
Tokyo 187-8577
JAPAN

Tatsuya Shimura
Department of Mathematics
College of Science and Technology
Nihon University
1-8-14 Kanda-Surugadai, Chiyoda-ku
Tokyo 101-8308
JAPAN