Larisa Maksimova

EXPLICIT AND IMPLICIT DEFINABILITY IN MODAL AND RELATED LOGICS

We consider various versions of the Beth definability property for propositional normal modal logics, and also for superintuitionistic and relevant logics. We discuss interrelations of these properties, and find their algebraic equivalents in case of modal and superintuitionistic logics.

Let x, q, q' be disjoint lists of variables not containing y and z, $A(x,q,y)$ a formula.

We say that a logic L has the projective Beth property $PB1$. If $\vdash L A(x,q,y) & A(x,q',z) \rightarrow (y \leftrightarrow z)$ implies $\vdash L A(x,q,y) \rightarrow (y \leftrightarrow B(x))$ for some formula $B(x)$.

Further, L has the projective Beth property $PB2$. If $A(x,q,y), A(x,q',z) \vdash L y \leftrightarrow z$ implies $A(x,q,y) \vdash L y \leftrightarrow B(x)$ for some $B(x)$.

L has the Beth Property $B1$. If $\vdash L A(x,y) & A(x,z) \rightarrow (y \leftrightarrow z)$ implies $\vdash L (A(x,y) \rightarrow (y \leftrightarrow B(x)))$ for a suitable $B(x)$.

L has the Beth Property $B2$. If $A(x,y), A(x,z) \vdash L y \leftrightarrow z$ implies $A(x,y) \vdash L y \leftrightarrow B(x)$ for some $B(x)$.

CIP. If $\vdash L A(x,q) \rightarrow B(x,r)$ then there is a formula $C(x)$ such that both $\vdash L A(x,q) \rightarrow C(x)$ and $\vdash L C(x) \rightarrow B(x,r)$.

IPD. If $A(x,q) \vdash L B(x,r)$ then there is a $C(x)$ such that $A(x,q) \vdash L C(x)$ and $C(x) \vdash L B(x,r)$.

In [6] a diagram of interrelations between the properties B1, B2 and interpolation properties CIP and IPD was found for normal modal logics (n.m.l.). It was proved that B1 is equivalent to CIP, and implies B2 and IPD; the properties IPD and B2 are independent.
Theorem 1. In the family of normal modal logics

(i) PB_1 is equivalent to CIP and to B_1,
(ii) PB_1 implies the conjunction of B_2 and IPD, but the converse does not hold,
(iii) the conjunction of B_2 and IPD implies PB_2,
(iv) PB_2 implies B_2 but the converse does not hold.

Since all normal extensions of K_4 have B_2 [6], we get

Theorem 2. For every n.m.l. containing K_4, IPD implies PB_2.

It is an open problem, if PB_2 implies IPD in modal logics. The answer is positive for normal extensions of S_5.

Theorem 3. For each n.m.l. containing S_5, PB_2 implies CIP, therefore, all properties PB_1, B_1, CIP, IPD, PB_2 are equivalent in $NE(S_5)$.

It was proved in [5] that just four logics in $NE(S_5)$ satisfy IPD and CIP. At the same time, all extensions of S_5 have B_2.

ES^*. For any A, B in $V(L)$, for any monomorphism $\alpha : A \to B$ and for any $x \in B - \alpha(A)$, such that $\{x\} \cup \alpha(A)$ generates B, there exist $C \in V$ and monomorphisms $\beta : B \to C$ and $\gamma : B \to C$ such that $\beta \alpha = \gamma \alpha$ and $\beta(x) \neq \gamma(x)$.

Now we define a stronger property

SES. For any A, B in $V(L)$, for any monomorphism $\alpha : A \to B$ and for any $x \in B - \alpha(A)$ there exist $C \in V$ and monomorphisms $\beta : B \to C$ and $\gamma : B \to C$ such that $\beta \alpha = \gamma \alpha$ and $\beta(x) \neq \gamma(x)$.

Theorem 4. N.m.l. L satisfies PB_2 iff $V(L)$ has SES.

Due to the deduction theorem, B_1 is equivalent to B_2, and CIP is equivalent to IPD for any superintuitionistic logic (s.i.l.). Every s.i.l. has B_1 [2] but only eight s.i.l. have CIP [4]. It is easy to see that CIP implies PB_1, and PB_1 implies B_1. Further, CIP in s.i.l. L is equivalent to the amalgamation property AP in $V(L)$. We can prove that B_1 is equivalent to ES^*, and PB_1 is equivalent to SES. It is an open problem: How many s.i.l. have PB_1?
It was proved in [9] that the basic relevant logics, among them \(\text{E}\) and \(\text{R}\), have neither CIP nor Beth definability properties. Nevertheless, CIP holds in \(\text{OR}\) which is \(\text{R}\) without distributivity axiom [7].

Only some weak forms of the deduction theorem hold in relevant logics [3], [8]. On this reason, the usual implication from CIP to IPD holds for extensions of \(\text{E}\) if the language includes a propositional constant \(t\) (“the strongest truth”), where \(\vdash_L\) denotes the deducibility with modus ponens and adjunction. To preserve a standard proof of the Beth property from CIP, we need an intensional conjunction \(\circ\) (that is commutative and associative) and the following definition

\[
PBI'. \quad \text{If } \vdash_L A(x, q, y) \circ A(x, q', z) \rightarrow (y \leftrightarrow z) \text{ then } \vdash_L A(x, q, y) \rightarrow (y \leftrightarrow B(x)) \text{ for some } B(x).
\]

Thus CIP implies PBI’ in extensions of \(\text{R}\). The equivalence of IPD to \(\text{AP}\) holds for all extensions of \(\text{E}\) [1], and the equivalence of CIP in \(L\) to \(\text{SAP}\) in \(V(L)\) holds for extensions of \(\text{R}\) (or of the fragment of \(\text{R}\) with \(t\), \&, \(\rightarrow\) and \(\circ\)).

References

38

Institute of Mathematics
Siberian Division of Russian Academy of Sciences
630090 Novosibirsk
Russia
e-mail: lmaksi@math.nsc.ru