Abstract

We prove that the existence of consistent choices for dense relations, in short \mathcal{F}_{fin}, is tantamount in ZF to the existence of such choices for n–element sets with $n \geq 3$. Our interest in \mathcal{F}_{fin} stems from [2] where it has been shown that \mathcal{F}_{fin} is equivalent to CT_{fin} – the Compactness Theorem for locally finite sets of propositional sentences. The condition CT_{fin}, in turn, was suggested by Cowen [1] in connection with the $P = NP$ – problem.

The question whether \mathcal{F}_{fin} is equivalent to AC_{fin}, as well as the equivalence of $\mathcal{F}_{2}^{\text{fin}}$ and AC_2 are still open.

A binary relation \mathcal{R} on a set \mathcal{X} is said to be dense iff for every $a \in \mathcal{X}$ \{b $\in X : \neg a\mathcal{R}b\}$ is finite;

let \mathcal{A} be a family of sets and \mathcal{R} a binary symmetric relation on $\bigcup \mathcal{A}$. A choice set S on \mathcal{A} is \mathcal{R}–consistent iff $a\mathcal{R}b$ for every $a \neq b$, $a, b \in S$.

The existence of consistent choices, and its variants, are formulated as follows:

\mathcal{F} – for every nonempty family \mathcal{A} of pairwise disjoint, finite and nonempty sets and a binary symmetric relation \mathcal{R} on $\bigcup \mathcal{A}$ if every finite subfamily of \mathcal{A} has an \mathcal{R}–consistent choice, then the whole family \mathcal{A} has such a choice set;

\mathcal{F}_{fin} – as above with additional assumption that \mathcal{R} is dense;

$\mathcal{F}_{n}^{\text{fin}}$ – as above for families of exactly n–element sets;

$\mathcal{F}_{\leq n}^{\text{fin}}$ – as in \mathcal{F}_{n} for families of at most n–element sets.
Facts.

Theorem 1. \(\mathcal{F}_{n+1}^{fin} \rightarrow \mathcal{F}_n^{fin} \) for every \(n \geq 2 \).

Proof. Let every finite subfamily \(\mathcal{A}_0 \) of \(\mathcal{A} \) has an \(\mathcal{R} \)-consistent choice. With every \(A \in \mathcal{A} \) we correlate two distinct new elements, say \(*_A^1 \) and \(*_A^2 \). Then we put \(A_1^* := A \cup \{*_A^1\} \), \(A_2^* := A \cup \{*_A^2\} \), where \(A_1^*, A_2^* \) are two disjoint “copies” of \(A \) e.g. \(A_1^1 := \{(a,1) : a \in A\} \), \(A_2^2 := \{(a,2) : a \in A\} \). Moreover let \(\mathcal{A}^* := \{A_i^* : A \in \mathcal{A}, i = 1,2\}, \ A^* := A_1^* \cup A_2^* \) and \(\pi((a,i)) = a \) for \(a \in A, i = 1,2 \). It should be noticed that \(\mathcal{A}^* \) is a family of \(n+1 \)-element sets.

\[
\begin{array}{cccc}
A & : & a & b & \ldots & z \\
\hline
A_1^* & : & a^1 & b^1 & \ldots & z^1 & *_A^1 \\
| & | & | & | & | & | \\
A_2^* & : & a^2 & b^2 & \ldots & z^2 & *_A^2 \\
\hline
\end{array}
\]

A binary symmetric relation \(\mathcal{R}^* \) on \(\bigcup \mathcal{A}^* \) is defined as follows (see above diagram):

1. If \(x \in A^*, y \in B^*, A \neq B, A,B \in \mathcal{A} \), then
 - if \(x \) or \(y \) is an “asterisk”, then \(x \mathcal{R}^* y \);
 - otherwise \(x \mathcal{R}^* y \) iff \(\pi(x) \mathcal{R} \pi(y) \),

2. If \(x,y \in A^*, A \in \mathcal{A} \), then
 - if one of \(x \) or \(y \) is an “asterisk” then they are not in \(\mathcal{R} \);
 - otherwise \(x \mathcal{R}^* y \) iff \(\pi(x) = \pi(y) \).
Of course \mathcal{R} is dense, hence by $\mathcal{F}_{n+1}^{\text{fin}}$, then exists an \mathcal{R}–consistent choice S^* of A^*. Let us notice that for no $A \in \mathcal{A}$, and no $j = i, 2 \ast i \in S^*$. Let $A \in \mathcal{A}$. If $S^* \cap A^1 = \{a_1\}$ and $S^* \cap A^2 = \{a_2\}$ then $a_1 \mathcal{R} a_2$ which shows, by the definition of \mathcal{R}, that a_1 and a_2 are the copies of the same element of A. Thus the set $S := \{\pi(x) : x \in S^*\}$ is a choice on \mathcal{A}. It is not difficult to notice that S is \mathcal{R}–consistent. □

Corollary 1. $\mathcal{F}_{n}^{\text{fin}} \rightarrow \mathcal{F}_{n+1}^{\text{fin}} \rightarrow \mathcal{F}_{n}^{\text{fin}} \rightarrow \mathcal{F}_{3}^{\text{fin}} \rightarrow \mathcal{F}_{2}^{\text{fin}}$.

Corollary 2. $\mathcal{F}_{n}^{\text{fin}} \rightarrow \bigwedge_{k \leq n} AC_k$.

Proof. One can easily show that $\mathcal{F}_{k}^{\text{fin}} \rightarrow AC_k$, for every $k \geq 2$.

Theorem 2. $\mathcal{F}_{3}^{\text{fin}} \rightarrow \mathcal{F}_{\leq 3}^{\text{fin}}$.

Proof. Let \mathcal{A} be a family of at most three–element, nonempty and pairwise disjoint sets and \mathcal{R} be a binary symmetric relation on $\bigcup \mathcal{A}$ such that every finite subfamily \mathcal{A}_0 of \mathcal{A} has an \mathcal{R}–consistent choice. For any $A \in \mathcal{A}$ we define three–element set A^* in a following way:

1. If A is three–element, we just put $A^* := A$;
2. If A is two–element, we choose $a_A \in A$ (by AC_2–comp. Cor. 2), and take $A^* := A \cup \{a_A^*\}$, where a_A^* is a fresh “copy” of a_A;
3. If A has exactly one–element a, we choose its two “copies” a^* and a^{**}, and take $A^* := A \cup \{a^*, a^{**}\}$.

Then we take $\mathcal{A}^* := \{A^* : A \in \mathcal{A}\}$ and we define a binary relation \mathcal{R}^* on $\bigcup \mathcal{A}^*$ in the following way:

$$x \mathcal{R}^* y \text{ iff } \pi(x) \mathcal{R} \pi(y), \text{ for } x, y \in \mathcal{A}^*.$$
where

$$\pi(x) := \begin{cases} a_A & \text{if } x = a_A^*, a_A^{**} \\ x & \text{otherwise} \end{cases}$$

Now the number of those elements $y \in \bigcup \mathcal{A}^*$ such that $\neg (x \mathcal{R}^* y)$, is not greater than twice the number of those $a \in \bigcup \mathcal{A}$ for which $\neg (\pi(x) \mathcal{R} a)$. Thus \mathcal{R} is dense.

Since every \mathcal{R}–consistent choice on \mathcal{A} is also an \mathcal{R}^*–consistent choice on \mathcal{A}^*, we get an \mathcal{R}^*–consistent choice \mathcal{S} on the family \mathcal{A}^*. Then we easily see that $\{\pi(x) : x \in \mathcal{S}\}$ is an \mathcal{R}–consistent choice on \mathcal{A}. □

As it is known (see [2]) \mathcal{F}_{f_n} is equivalent to some statement about propositional calculus. We consider the language $\{\neg, \land, \lor\}$ and accept standard definitions of propositional formulae.

A set \mathcal{X} of propositional formulas is said to be locally satisfiable iff every finite subset \mathcal{X}_0 of \mathcal{X} is satisfiable; \mathcal{X} is locally finite iff every variable p of \mathcal{X} appears only in finite number of formulas of \mathcal{X}. The Compactness Theorem and its variants are the following statements:

CT – every locally satisfiable set of propositional formulas is satisfiable;

CT_{f_n} – every locally satisfiable and locally finite set of propositional formulas is satisfiable;

n–Sat $-$ every locally satisfiable set of elementary disjunctions consisting of at most n literals (a literal is a variable or its negation) is satisfiable;

n–Sat$_{f_n}$ – as above for locally finite sets of elementary disjunctions;

Theorem 3. $\mathcal{F}_{\leq 3} \rightarrow 3$–Sat$_{f_n}$.

Proof. Let \mathcal{X} be locally satisfiable family of at most three–literal disjunctions in which every variable appears only finitely often. Let now for $\alpha \in \mathcal{X}$,

$$A_\alpha := \{(l, \alpha) : l \text{ is a literal in } \alpha\}$$
and let $\mathcal{A} := \{A_{\alpha} : \alpha \in X\}$.

Of course \mathcal{A} is a family of non-empty, at most three-element, pairwise disjoint sets. Taking R defined as follows:

$$(l_1, \alpha_1) \mathcal{R} (l_2, \alpha_2) \text{ iff } \{l_1, l_2\} \text{ is satisfiable,}$$

we easily see that \mathcal{A} and R satisfy premises of $F_{\leq 3}^{fin}$. Indeed, the density of R follows from local finiteness of X. Let now \mathcal{A}_0 be a finite subfamily of \mathcal{A}. Then there is a finite $X_0 \subseteq X$ such that $\mathcal{A}_0 \subseteq \{A_{\alpha} : \alpha \in X_0\}$. Hence X_0 is satisfied by some valuation v_0. Since elements of X_0 are elementary disjunctions, the sets

$$\{(l, \alpha) \in A_{\alpha} : v_0(l) = 1\}, \text{ for } \alpha \in X_0$$

are nonempty. We know that for finite families AC holds, so we can choose exactly one (l_{α}, α) from each of the above sets. Hence the set $\{(l_{\alpha}, \alpha) : \alpha \in X_0\}$ is an R–consistent choice on \mathcal{A}_0. Thus \mathcal{A} has an R–consistent choice S. Putting now for any variables p:

$$v(p) := 1 \text{ iff } (p, \alpha) \in S \text{ for some } \alpha \in X$$

we get a valuation satisfying X. □

Corollary 3. $F_{n}^{fin} \rightarrow 3\text{-Sat}_{fin}$, for $n \geq 3$.

R. Cowen proved in [1] that $3\text{-Sat} \leftrightarrow CT$. The same argument can be used to establish $3\text{-Sat}_{fin} \rightarrow CT_{fin}$. Thus,

Corollary 4.

(i) $F_{n}^{fin} \leftrightarrow F_{fin}$, $n \geq 3$,

(ii) $F_{n}^{fin} \leftrightarrow CT_{fin}$, $n \geq 3$. 16
Proof. The proof follows clearly from the above considerations and from [2].

The above could be seen as a variant of \(F_n \leftrightarrow F, n \geq 3 \), proved by Levy [3] and Mycielski [5]. Let us, however, note that the arguments are quite different.

As an immediate corollary of the above considerations we also obtain

\[
AC_n \vdash F_n^{\text{fin}}, \quad \text{for} \quad n \geq 3.
\]

In case of

\[
AC_2 \rightarrow F_2^{\text{fin}} \quad \text{and} \quad AC_{\text{fin}} \rightarrow F_{\text{fin}}
\]

the problem is still open.

Remark 1. Levy proves in [3] that \(F_2 \vdash AC_3 \). Hence \(F_2^{\text{fin}} \) is not equivalent to \(F_{\text{fin}} \). Besides, using similar method as Levy, we can demonstrate that \(F_2 \vdash AC_k \) for every \(k \neq 2,4 \). This shows \(F_2^{\text{fin}} \vdash AC_k \) for \(k \neq 2,4 \).

Warning. Implication \(AC_{\text{fin}} \rightarrow F_{\text{fin}} \) cannot be falsified with the popular technic of “permutation models”. It is known that \(AC_{\text{fin}} \rightarrow AC_{\text{count}} \) is true in any permutation model of ZFA (see [4], pp. 114, ex 11) and \(AC_{\text{count}} \rightarrow F_{\text{fin}} \) is proved in [2].

References

Department of Mathematics
Silesian University
40–007 Katowice, Bankowa 14
Poland