AN UNDECIDABLE PROBLEM FOR REGULAR EQUATIONS

Abstract
This is a continuation of our note [4]. We deal with two kinds of special equations: normal and regular (see [4]). Our aim is to point an undecidable problem on regular (normal) equations. An extended version is submitted to Algebra Universalis.

Preliminaries

Our nomenclature and notation is basically those of [4]. We consider varieties of universal algebras of a type $\tau : T \to N$, where T is a set and N denotes the set of all positive integers. If A is an algebra and V is a variety (of type τ), then $E(A)$ and $E(V)$ denotes the set of all equations of type τ, satisfied in A and V, respectively. Following Plonka, an equation $p = q$ is called regular if the set of all variables occurring in p and q coincides. An equation is called normal, if p and q are the same variables or neither p nor q is a variable. For a variety V, $R(V)$ and $N(V)$ denotes the set of all regular (normal) equations satisfied in V, respectively. Analogously, for an algebra A we define sets $R(A)$ and $N(A)$. If $E(V) = R(V)$ ($E(V) = N(V)$), for a variety V, then V is called regular (normal). From now on we consider only varieties of a finite type τ, i.e. such that T is a finite set.

The aim of this paper is to present a proof of undecidability of a property (R) for regular equations (N) for normal equations). Following Markov [5] we consider finite associative systems, the elements of which are
“words” – i.e. strings of letters belonging to a finite alphabet. Each system is defined by a finite number of generating relations of the form $P \Leftrightarrow Q$, where P and Q are words.

A property \mathcal{P} of associative systems is called invariant if every system which is isomorphic to a system possessing the property \mathcal{P} itself possesses this property. Let \mathcal{P} be an invariant property such that (1) there is a system S_0 which does not have the property \mathcal{P} and is not isomorphic to a subsystem of any system having the property \mathcal{P}, and (2) there is a system S_1 which has the property \mathcal{P}.

The main result established in [5] (cf. [6]) is that for no property \mathcal{P} satisfying conditions (1) and (2) does there exist an algorithm permitting one to decide in a finite number of steps whether an arbitrary given associative system does or does not possess the property \mathcal{P}. If \mathcal{P} is an hereditary property, i.e. if every subsystem of a system with the property \mathcal{P} always has the property \mathcal{P}, then the condition (1) can be simplified: it is sufficient to assume that there exists a system not having the property \mathcal{P}.

Properties satisfying conditions (1) and (2) are referred as Markov’s properties.

Following [2] we study some problems of equational theories by transforming them into problems in monoids. A regular equational theory E is called “monadic” iff there exists a presentation of this theory such that all terms in it are built by unary functional symbols only. We apply Lemma 3.11 of [2] which states the connection between E-equality induced by monadic theory and the equality “$=_{M}$” in the corresponding monoid M_E.

Given an associative system A. Consider a property $(R1)$ defined as follows:

\[(R1) \quad E(A) \neq R(A).\]

It is obvious that $(R1)$ is a hereditary property and that there exist associative systems with and without this property. For example the trivial monoid (on one letter a and the relation $aa = a$) possesses $(R1)$ and a free monoid (on one letter A and the relation $a = a$) does not possess the property $(R1)$. Therefore the property $(R1)$ for associative systems is undecidable.
From now on, suppose that V is finitely axiomatized equational theory (a variety) of a finite, unary type (i.e. $\tau(T) = \{1\}$). It is well known that regular (normal) equations are closed under Birkhoff’s rules of inferences (i) – (iv) (see [1], [3], p. 170). Therefore it is decidable if a variety V is regular (i.e. $E(V) = R(V)$). Namely V is regular iff all equations of an axiomatic Σ of V are regular. This explains, the definition of the property (R) below:

$$(R) \quad E(V) = R(W) \neq E(W),$$

for a variety W of type τ.

DEFINITION. An equational theory V is called (R) theory iff V possesses the property (R).

THEOREM. The class problem for regular (R) theories is undecidable.

PROOF. We show that (R) is Markov’s property. Let S be the theory defined by all regular equations of a given finite unary type τ. By Theorem 4 of [7], S is finitely axiomatized monadic regular theory with the property (R), namely $S = R(T_{\tau})$, where T_{τ} denotes the trivial equational theory of the type τ. From the other hand, let V be an equational theory of the type τ, defined by the equation $x = x$. Let S be the monoid of terms associated with S (see [2], p. 13, 14). From an observation of A. Tarski [8], that the lattice of all equational theories of a given (non-empty and non-nullary) type, has no minimal non-zero elements, it follows that S is not an (R) theory (we can also use Theorem 5 of [4], to prove that S does not have the property (R)). Let S be the monoid associated with S and A be a monoid. Then if S is a submonoid of A, then $E(S) \supseteq E(A)$, so if $E(A) = R(B) \neq E(B)$, for a monoid B then $E(S) \supseteq R(B) \supseteq E(S)$ and thus $E(S) = R(B)$ which is impossible by Theorem 5 of [4]. Therefore S is not a submonoid of any monoid A with the property (R). We conclude that the property (R) is undecidable. \Box

Analogously one can define and consider an undecidable property (N) defined in connection with the notion of normal equation.
References

*Institute of Mathematics
Polish Academy of Sciences
ul. Kopernika 18
51–617 Wrocław, Poland*