Let F_p be a set of all properly binary Boolean functions $f : 2^2 \rightarrow 2$, i.e., f depends on both arguments. Of the 16 binary truth functions 10 belongs to F_p, namely $\lor, \land, \leftrightarrow, \leftarrow$ (reverse implication), \uparrow (Sheffer function) and the duals of these. For $F \subseteq F_p$ let $\vdash F$ denote the common logic\(^1\) of the $f \in F$ in the propositional language with one binary function symbol, $\vdash F = \bigcap_{f \in F} [\vdash 2^f]$, where 2^f denotes the 2-element matrix $((2^f,f),1)$. A study of $\vdash F$ is useful for various purposes, e.g. for information processing, see [3]. $\vdash F$ axiomatizes the common sequential rules of the $f \in F$. It needs not to have tautologies but this is a minor point. Particularly interesting is the question how ambiguous $\vdash F$ actually is, i.e., how much information in form of additional rules needs a system of information processing dealing with $\vdash F$ in order to identify a connective $f \in F$. This clearly amounts to an analysis of the strenghtenings $\vdash \supset \vdash F$. Our main result is

Theorem 1. $\vdash F_p$ (and hence $\vdash F$ for each $F \subseteq F_p$) has finitely many strenghtenings only. All these are determined by finitely many finite matrices.

In other words, $\vdash F_p$ has finite degree of maximality (see [4] for basic notions). $\vdash F_p$ has a huge number of strenghtenings. Presently we only know that its number is less than 10^{15}. However, it has precisely 36 maximal

\(^1\) A logic is here a structural consequence relation denoted by \vdash or a similar symbol \vdash is non-trivial if not $\alpha \vdash \beta$ for all formulas α, β. We omit the improper binary truth functions from our consideration because they are less interesting and cause some additional technical problems.
(nontrivial) strengthenings, including the \models_{2^f} for $f \in F_p$. The remaining 26 are 2^k-valued, $2 \leq k \leq 5$. For $|F| \leq 4$ the maximality degree of \models_F is relatively small and can be computed by hand.

Theorem 1 easily follows from Theorem 2 and the Lemma below. SK, PK denote the class of submatrices and of direct products of members of a class K of matrices, respectively. t_0 and t_1 denote the 1-element matrices whose element is designated and not designated, respectively. $K \neq \emptyset$ implies $t_1 \in PK$ (t_1 appears as the power of some $A \in K$ with the empty index set). If K, M are classes of matrices or single matrices we write $M \equiv K$ (M is isomorphic to K). Clearly $K \cup \{t_0\} \equiv K$ and $K \cup \{t_1\} \equiv K$ only if \models_K has no tautologies. A matrix A is trivial if either $A \equiv t_0$ or $A \equiv t_1$. Call K closed if for each nontrivial $A \in SK$ there is some $M_A \subseteq K$ with $A \equiv M_A$. If $\models = \models_K$ for some closed K then K is said to be a closed semantics for \models.

Lemma ([3]). \models has finite degree of maximality iff \models has a closed semantics M, M finite. If $|M| = n$ then \models has maximality degree $< 2^{n+1}$.

The proof follows essentially from a well-known result of [4] which implies that K is closed iff each $\models' \supseteq \models_K$ has a representation $\models' = \models_K$ for some $K' \subseteq K \cup \{t_0\}$.

Let $\times M$ denote the direct product of all members of a set M of matrices ($\times \emptyset = t_1$ and $\times \{A\} = A$). Put $\times^* K = \{\times M : M \subseteq K\}$. Clearly, $|\times^* K| = 2^n$ provided $|K| = n$.

Theorem 2. For each $F \subseteq F_p, \times^* \{2^f : f \in F\}$ is a closed semantics for \models_F.

The proof of Theorem 2 which generalizes the results from [3] is essentially based on the fact that $\to, \leftrightarrow, \leftarrow, \uparrow$ are independent in the sense of [1] and that the variety V generated by the grupoids $(2, \to), (2, \leftrightarrow), (2, \leftarrow), (2, \uparrow)$ is strongly irregular, i.e. there is a term $\sigma(x, y)$ such that in V holds the equation $\sigma(x, y) = x$ ([2, Example 1.7]).

The maximality degree of \models_F strongly grows with $|F|$ but essentially depends also on the composition of F. E.g., for $|F| = 2$ it is ≤ 10 and this bound is realized for $\{\uparrow\}$ (the dual of \uparrow) as easily follows from Theorem 2. On the other hand in many cases of $F := \{f, g\}, \models_2$ and \models_3 are the only proper nontrivial strengthenings of \models_F. An example is $F := \{\to, \leftrightarrow\}$. In this case $\{\to, \leftrightarrow\}$ is already closed because $2^\to \times 2^\leftrightarrow \equiv \{2^\to, 2^\leftrightarrow\}$. Since
each $\vdash \supseteq \vdash_F$ has tautologies, $\models_{2\rightarrow}$ and $\models_{2\rightarrow}$ are indeed the only proper nontrivial strengthenings of \vdash_F. Call $F \subseteq F_P$ ($|F| \geq 2$) nice whenever \{2f : $f \in F$\} is already closed, as in the last example. For a nice F, the $f \in F$ have a maximum of common rules, or, the calculus \vdash_F is ambiguous to minimal extend. In particular, the only maximal strengthenings of \vdash_F are the \models_f for $f \in F$. From Theorem 2 it easily follows that F is nice if and only if F consists of some or all of the familiar connectives $\land, \lor, \rightarrow, \leftrightarrow$ and \leftarrow which is essentially the same as \rightarrow). E.g., for $F_1 = \{\land, \lor, \rightarrow\}$, the favoured system of binary connectives, $\supseteq F_1$ has 7 proper nontrivial strengthenings only. Consider $F_2 = \{\land, +, \rightarrow\}$, i.e. “or” is replaced by “either-or”, $\supseteq F_2$ has nearly twice as many strengthenings as has $\vdash F_1$ which might explain to some extent the preference of F_1.

References

