CLASSICAL SUBTHEORIES AND INTUITIONISM

By S we shall denote the set of all formulas in the language \{\neg, $\&$, \lor, \Rightarrow\} and by C the classical consequence over S. The set of all theories we denote as Th. Th_0 is the set of all theories T such that $T = C(\alpha)$, for some $\alpha \in S$. By Th_1, we denote the set $\text{Th}\setminus\text{Th}_0$. The set of all complete theories we denote as Cpl. For a given $T \in \text{Th}$ let $L_T = \{Y \subseteq T : Y \in \text{Th}\}$. It is obvious that for every $T \in \text{Th}$ the system $< L_T, \subseteq >$ is a lattice. It is evident that in this lattice $X \cup Y = C(X \cup Y)$ and $X \cap Y = X \cap Y$, for any $X, Y \in L_T$.

In [1] and [2] Dzik has proved among others that the lattice $< L_S, \subseteq >$ is an implicative lattice and its content (i.e. the set of all formulas in the language \{\lor, $\&$, \Rightarrow, \neg\} which are valid in the lattice $< L_S, \cup, \cap, \Rightarrow, \rightarrow >$) is equal to the set INT of all formulas provable in the intuitionistic calculus. Here we will prove the following two theorems:

Theorem 1. If $T \in \text{Th}\setminus\{C(\emptyset)\}$, then $< L_T, \subseteq >$ is an implicative lattice and its content it equal to INT.

Theorem 2. Let $T_0 \in \text{Th}_0\setminus\{C(\emptyset)\}$ and $T_1 \in \text{Th}_1$. Then for every $T \in \text{Th}$ the lattice $< L_T, \subseteq >$ is isomorphic with one of the following lattices:

\[
< L_{C(\emptyset)}, \subseteq >, \quad < L_{T_0}, \subseteq >, \quad < L_{T_1}, \subseteq >.
\]

We define the function $J : \mathcal{P}(S) \longrightarrow \mathcal{P}(\text{Cpl})$ by:

\[J(X) = \{Z \in \text{Cpl} : X \not\subseteq Z\}, \text{ for any } X \subseteq S.\]

Lemma 1. (cf. [1], proof of Theorem 27).
Classical Subtheories and Intuitionism

(a) \(J(C(X)) = J(X) \), for any \(X \subseteq S \)
(b) \(J(X) = \bigcup \{ J(\alpha) : \alpha \in X \} \), for any \(X \subseteq S \)
(c) \(J(\neg \alpha) = \text{Cpl} \setminus J(\alpha) \), for any \(\alpha \in S \)
(d) \(J(\alpha \& \beta) = J(\alpha) \cup J(\beta) \), for any \(\alpha, \beta \in S \)
(e) \(J(X) = \emptyset \) iff \(X \subseteq \text{Cpl}(\emptyset) \), for any \(X \subseteq S \)
(f) if \(\emptyset \neq R \subseteq \mathcal{P}(S) \), then \(J(\bigcup R) = \bigcup \{ J(X) : X \in R \} \)
(g) \(J(X) \cap J(Y) = J(C(X) \cap C(Y)) \), for any \(X, Y \subseteq S \)
(h) if \(T_1, T_2 \in \text{Th} \), then \(T_1 \subseteq T_2 \) iff \(J(T_1) \subseteq (T_2) \).

Note that from (a), (b) and (c) of the above Lemma it follows that the function \(J \) is an information function in the sense of [5]. Observe that by virtue of (e), (c), (f) and (g) of Lemma 1 the family \(T = \{ J(X) : X \subseteq S \} \) is a topology in the set \(\text{Cpl} \). By \(W \) we denote the topological space \(< \text{Cpl}, T > \). If \(Z \subseteq \text{Cpl} \) and \(T_Z = \{ Z \cap J(X) : X \subseteq S \} \), then naturally the system \(W_Z = < Z, T_Z > \) is a subspace of \(W \).

LEMMA 2. (cf [1], Theorem 27). Let \(T \in \text{Th} \). Then the lattice \(< LT, \subseteq > \) is isomorphic with the lattice \(< T_{J(T)}, \subseteq > \).

PROOF. Let \(T \in \text{Th} \). Let us consider the mapping \(H : LT \rightarrow T_{J(T)} \) given by \(H(Y) = J(Y) \), for every \(Y \in LT \). It is evident that \(H \) is an injection. We shall prove that it is a surjection. Let \(Z \in T_{J(T)} \), i.e. \(Z \) is an open set in the space \(W_{J(T)} \). Since \(J(T) \) is an open set in \(W \), then \(Z \) is also an open set in \(W \). From the definition of the space \(W \) there is a set \(X \subseteq S \) such that \(J(X) = Z \). By Lemma 1 (a), (h) we conclude that \(C(X) \in LT \) and \(H(C(X)) = Z \). From Lemma 1 (h) it follows that \(H \) is an isomorphism.

LEMMA 3. \(W \) is homeomorphic with the Cantor space.

PROOF. From Lemma 1 (b), (c) it follows that the set \(\{ J(\alpha) : a \in S \} \) is a basis of the space \(W \) and it consists of closed-open sets. Hence \(W \) is a zero-dimensional space. We easily prove that \(W \) is a regular space with a countable basis, so it is a metric space. Besides \(W \) is dense-in-itself and compact. It is well-known that every zero-dimensional metric, dense-in-itself, compact space is homeomorphic with the Cantor space. \(\square \)

We note that the set \(B_J = \{ J(\alpha) : \alpha \in S \} \) is a Boolean algebra of all closed-open subsets of the Cantor space (see Lemma 7 (a)). Note also that \(B_J \) is isomorphic with the Lindenbaum-Tarski algebra \(S/C(\emptyset) \).
Connections between Boolean algebras and the Cantor space are considered in [4].

Lemma 4. If $T \in \text{Th}\{C(\emptyset)\}$, then the lattice $\langle T_J(T), \subseteq \rangle$ is implicative and its content is equal to INT.

Proof. Let $T \in \text{Th}\{C(\emptyset)\}$. Then $W_{J(T)}$ is a non-empty, open subspace of W. So $W_{J(T)}$ is a dense-in-itself, metric space. The lattice $\langle T_J(T), \subseteq \rangle$ of all open sets of W is implicative and, according to the well-known result of McKinsey and Tarski (see [3], chapter IX, Theorem 3.2), its content is equal to INT. □

Proof of Theorem 1 follows from Lemmas 2 and 4.

Now we are going to prove Theorem 2.

Lemma 5. Any two non-empty, closed-open subsets of the Cantor space are homeomorphic. Any two open, but not closed subsets of the Cantor space are homeomorphic. □

The next Lemma is an easy consequence of Lemmas 5 and 3:

Lemma 6. If $Z_1, Z_2 \subseteq \text{Cpl}$ are both non-empty, closed-open sets in W or they are both open, but not closed sets in W then the lattices $\langle T_{Z_1}, \subseteq \rangle$ and $\langle T_{Z_2}, \subseteq \rangle$ are isomorphic. □

Lemma 7. Let $Z \subseteq \text{Cpl}$ be an open set in W and let $T \in \text{Th}$ be such that $J(T) = Z$. Then

(a) Z is closed-open iff $T \in \text{Th}_0$

(b) Z is open, but not closed iff $T \in \text{Th}_1$. □

Proof of Theorem 2. Let $T_0 \in \text{Th}_0\{C(\emptyset)\}$ and $T_1 \in \text{Th}_1$. Take up an arbitrary $T \in \text{Th}$. If $T \in \text{Th}_0\{C(\emptyset)\}$, then $J(T)$ is a non-empty, closed-open set in W (see Lemma 1 (c) and Lemma 7). Hence by Lemmas 6 and 2 the lattice $\langle L_T, \subseteq \rangle$ is isomorphic with the lattice $\langle L_{T_0}, \subseteq \rangle$. We analogously prove that if $T \in \text{Th}_1$, then $\langle L_T, \subseteq \rangle$ is isomorphic with $\langle L_{T_1}, \subseteq \rangle$. □
References

