V. L. Vasyukov

T-F-TOPOSES FOR ŁUKASIEWICZ’S INFINITE-VALUED LOGICS

The interpretation of the Łukasiewicz’s \mathcal{L}_{ω}-infinite-valued logic \mathcal{L}_{ω} in toposes is proposed. The construction of the T-F-topos of functors Set^{Σ} is defined by means of infinite T-F-sequences and then it is used for the interpretation of \mathcal{L}_{ω} in this topos. The equivalency of factor-semantics and T-F-toposes semantics for \mathcal{L}_{ω} is proved.

1. It is known that the category Set^{Σ} of the functors for an arbitrary category \mathcal{C} is a topos [1]. This fact was used in semantics only for intuitionistic logics. The present paper provides such a semantics for the system \mathcal{L}_{ω} of Łukasiewicz. In the role of \mathcal{C} we shall use the Karpenko’s matrix M_{Σ} (for details see [2]) which categorically turns out to be a finitely complete category of order. There are, as we know, connections between the set Σ of M_{Σ} and the set of the equivalency classes of the infinite T-F-sequences where every matrix element corresponds to the number of occurrences of T (or F, respectively). In this sense we consider factor-semantics interpretation (see [2]) $\Sigma^+ \models x A$ (here $\Sigma^+ = \text{Fin}(\omega)/\sim$) where the truth-value of A is defined by any T-F-sequence α with $\eta(\alpha) = x$. We get $\Sigma^+ \models A$ in case of all sequences that leads, in particular, to $\Sigma^+ \models \text{Fin}(\omega)/\sim$ where $\{\text{Fin}(\omega)/\sim\}$ plays the role of the set of sequences. Hereafter \Box will mean the end of proof.

2. In the topos Set^{Σ} the functor $\Omega : \Sigma \to \text{Set}$ must assign to each $p \in \Sigma$ the set of T-F-sequences $\{\alpha_i\}$ with $\eta(\alpha_i) = p$. But the set of sequences with the same $\eta(\alpha_i)$ represents either lexicographic Heyting algebra or lexicographic Brouwer one (see [2]) i.e., $\Omega(p) = \Omega p = \{\alpha : \eta(\alpha) = p\} = LH_p$ (or LB_p). Then $\Omega_{pq} : \Omega_p \to \Omega_q$ assigns to each LH_p (or LB_p) a respective LH_q (or LB_q) such that the occurrences of T (or F) in $\beta \in LH_q$ (or LB_q) differs from the respective ones in $\alpha \in LH_p$ (or
LB_p) in \(\eta(\beta) - \eta(\alpha) \) cases. Moreover, we choose only the smallest (under the lexicographic order) elements of the set of such T-F-sequences. If the sequences belong to different types of algebras then we use the linearly ordered set \(\{LH\} \cup \{LB\} \), where \(LH < LB \). In order to get the concrete sequences it is enough to replace each \(T \) by \(F \) (or conversely) in sequences of one type and then to compare them. Using \(LHB \) to denote \(\{LH\} \cup \{LB\} \), by \(LHB_p \) we shall mean the respective Heyting or Brouwer algebra of the sequences with \(\eta(\alpha) = p \) for all \(\alpha \in LHB_p \). One easily shows that the lattice operations on algebras can be introduced according to their definitions on the elements.

The final object of the category \(\text{Set}^\Sigma \) is a constant functor \(1 : \Sigma \to \text{Set} \) which is determined by the condition \(1_p = \{ |T^{\aleph_0}| \} \) for \(p \in \Sigma \) and \(1_{pq} = id_{\{ |T^{\aleph_0}| \}} \) under \(p \leq q \). The subobject classifier \(\text{true} : 1 \to \Omega \) is a natural transformation, for which \(p \)-th component is defined by the equality \(\text{true}(|T^{\aleph_0}|) = LHB_p \) i.e., the function \(\text{true} \) chooses the respective greatest lexicographic algebra.

If \(\tau : F \to G \) is an arbitrary subobject of \(\text{Set}^\Sigma \)-object \(G \) then each component \(\tau_p \) is injective and we can regard it as an inclusion function \(F_p \hookrightarrow G_p \). \(p \)-th component of the characteristic arrow \(\chi_\tau : G \to \Omega \) is defined as follows:

\[
(\chi_\tau)_p(x) = \text{the lexicographically smallest } T-F\text{-sequence } \alpha \in LHB_p, \text{ for which } G_{pq}(x) = F_q i.e., \text{ when all occurrences of } T (\text{or } F) \text{ in } \alpha \text{ are the same as in case of } F_p \text{ (here } x \in G_p).\]

The commutativity of the diagram

\[
\begin{array}{ccc}
G_p & \xrightarrow{(\chi_\tau)_p} & \Omega_p \\
\downarrow & & \downarrow \\
G_q & \xrightarrow{(\chi_\tau)_q} & \Omega_q \\
\end{array}
\]

under \(p \leq q \) is equivalent to the assertion that \(\chi_\tau \) is a natural transformation of functor \(G \) to the functor \(\Omega \). To show \(\Omega \)-axiom holds in our case, we take the sequence of the commuting diagrams

\[
\begin{array}{ccc}
F_p & \xrightarrow{\tau_p} & G_p \\
\downarrow & \Rightarrow & \downarrow \\
F_q & \xrightarrow{\tau_q} & G_q \\
\end{array} \quad \Rightarrow \quad \begin{array}{ccc}
F_p & \xrightarrow{\tau_p} & G_p \\
\downarrow & \Rightarrow & \downarrow \\
\{ |T^{\aleph_0}| \} & \xrightarrow{\text{true}} & \Omega_p \\
\end{array} \quad \Rightarrow \quad \begin{array}{ccc}
F & \xrightarrow{\tau} & G \\
\downarrow & \Rightarrow & \downarrow \\
\Omega & \xrightarrow{\chi_\tau} & \Omega \\
\end{array}
\]
where two first ones are the pullbacks. Then we consider the reverse sequence of the commuting diagrams

\[
\begin{array}{cccc}
\bullet & \xrightarrow{\sigma} & \Omega & \xleftarrow{\Omega_p} \\
F & \xrightarrow{\tau} & G & \xleftarrow{G_p} \\
1 & \xrightarrow{\text{true}} & \Omega & \xleftarrow{\Omega_q} \\
\end{array}
\]

where two first ones are the pullbacks. From the second pullback we have

\((*)\) \(F_q = \{x : \sigma(x) \in LH_B_q\}\).

Then \(\alpha = (\chi_r)_p(x) \iff G_{pq}(x) \iff \sigma_q(G_{pq}(x)) = \beta \in LH_B_q\) (by \((*)\)) \(\iff \Omega_{pq}(\sigma_p(x)) = \beta \in LH_B_p\) (due to the last diagram) \(\iff \sigma_p(x) \land \beta = \alpha \in LH_B_p\) (by the definition of \(\Omega_{pq}\)) \(\iff \alpha = \sigma_p(x)\). Thus \((\chi_r)_p(x) = \sigma_p(x)\). Since an arbitrary \(p \in \Sigma\) and \(x \in G_p\) has been used, we have \(\sigma = \chi_r\) and \(\Omega\)-axiom holds.

The initial object \(0 : \Sigma \to \text{Set}\) in the category \(\text{Set}^\Sigma\) will be a constant functor such that for \(p \leq q\) we have \(0_p = \{\{F^{R_0}\}\}\) and \(0_{pq} = id_{\{\{F^{R_0}\}\}}\). The components of the natural transformation \(0 \to 1\) for any \(p\) are the maps \(\{\{F^{R_0}\}\} \to \{\{T^{R_0}\}\}\). An arrow \(\text{false}\) is a characteristic arrow of the subobject \(i : 0 \to 1\) by the definition. For its component \(\text{false}_p : \{\{T^{R_0}\}\} \to \Omega_p\) we have \(\text{false}_p(\{\{T^{R_0}\}\}) = \{\{F^{R_0}\}\}\).

Now we can define a negation as an arrow \(\neg : \Omega \to \Omega\) being a characteristic arrow of the subobject \(\text{false}\). Then \(p\)-th component \(\neg_p : \Omega_p \to \Omega_p\) for any \(\alpha \in LH_p\) gives us \(\neg_p(\alpha) = \beta \in LB_p\) i.e., we substitute all the occurrences of \(T\) by \(F\) and conversely for \(\alpha \in LB_p\). Denoting this operation as \(*\) we get \(LH^*_p = LB_p\) and \(LB^*_p = LH_p\).

Let us consider the functor \(\mathcal{B} : \Sigma \to \text{Set}\). Its \(p\)-th component can be defined as \(\mathcal{B}_p = \{< LH_B_q, LH_B_r> : \alpha R_\beta \& \alpha \in LH_B_q \& \beta \in LH_B_r \& p = q + r \} \subseteq \Omega_q \times \Omega_r\), where \(R\) is a tolerantness relation from [2]. For a given functor \(\mathcal{B}\) we define a coequalizer \(e : \mathcal{B} \Rightarrow \Omega \times \Omega\) of the two arrows with the respective components \(LH_B_q, LH_B_r\) by using the natural transformation \(e\) which components are the inclusions \(e_p : \mathcal{B}_p \hookrightarrow \Omega_q \times \Omega_r\). Now we can introduce an implication \(\not\to : \Omega \times \Omega \to \Omega\) being the characteristic arrow of \(e\). Its \(p\)-th component is \(\not\to_p (< LH_B_q, LH_B_r>) = LH_B_q^{L_p}\)
3. The connection between Set^Σ and M_Σ-validity is established by the following theorem.

Theorem 1. $\text{Set}^\Sigma \models A \iff \Sigma^+ \models A$.

Let $v : \varphi \rightarrow \Sigma^+$, where φ – the set of the formulas of L_{\aleph_0}. Using the valuation v we can define Set^Σ-valuation $v' : \varphi \rightarrow \text{Set}^\Sigma(1, \Omega)$. The function v' assigns to every propositional letter its truth value $v'(\Pi) : 1 \rightarrow \Omega$ in Set^Σ.

The component $v'(\Pi)_p : \{ [T^\aleph_0] \} \rightarrow \Omega_p$ one can get by

\[(**) \quad v'(\Pi)_p ([T^\aleph_0]) = v(\Pi) \cap LHB_p = v(\Pi)_p. \]

Thus $v'(\Pi)_p$ collects all the sequences with $\eta(\alpha) = p$ in which Π is true.

Looking at the diagram

\[
\begin{array}{ccc}
\{ [T^\aleph_0] \} & \overset{v'(\Pi)_p}{\longrightarrow} & LHB_p \\
\downarrow & & \downarrow \\
\{ [T^\aleph_0] \} & \overset{v'(\Pi)_q}{\longrightarrow} & LHB_q \\
\end{array}
\]

(which obviously commutes), we conclude that $v'(\Pi)$ is a natural transformation.

Lemma 1. For any $A \in \varphi$, the p-th component $v'(A)_p : \{ [T^\aleph_0] \} \rightarrow LHB_p$ of the natural transformation $v'(A)$ satisfies the equality

\[v'(A)_p ([T^\aleph_0]) = v(A)_p. \]

Proof. By the induction on the construction of a wff A. In case of $A = \Pi$ it follows from $(**)$. For $A = \neg B$ (when the lemma is proved for B) we have $v'(\neg B)_p = (\neg \circ v'(B))_p = \neg_p \circ v'(B)_p$, hence $v'(A)_p ([T^\aleph_0]) = \neg_p (v'(B)_p) ([T^\aleph_0]) = \neg_p (v(B)_p)$ (by the induction hypothesis) $\neq (v(B))_p$ (by the definition of the negative arrow) $\neq v(\neg B)_p$ (by the definition of the Σ-valuation) $\neq v(A)_p$.

$LHB_r = \{ \alpha \supset \beta : \alpha \in LHB_q \& \beta \in LHB_r \& \alpha R \beta \}$, where $\alpha \supset \beta = < a_1, \ldots, a_n, \ldots > \supset < b_1, \ldots, b_n, \ldots > = < a_1 \oplus b_1, \ldots, a_n \oplus b_n, \ldots >$ and the implication $\supset \oplus$ is a Boolean implication on the set $\{ T, F \}$ (see [2]).
Theorem 2. \(\vdash A \Rightarrow \Sigma^+ \models A. \)

Corollary 2.

\[\forall \alpha \in A \Rightarrow \Sigma^+ \models A. \]

Proof. If \(\Sigma^+ \models A \) then \(v'(A) = \text{true} \). Hence for any \(p \) we have \(v'(A)_p = \text{true}_p(\{|T^{[\alpha]}|\}) = LHB_p \). Since \(p \) is arbitrary, we get, in particular, \(v'(A)_{0^+} = \{|T^{[\alpha]}|\} \). Consequently, \(\Sigma^+ \models A \Rightarrow \Sigma^+ \models A. \)

The arrow \(v'(\Pi) : 1 \to \Omega \) chooses the respective \(LHB_p \) for every \(p \in \Sigma \). In such a case \(v(\Pi) \) can be defined as the union of all such \(LHB \)

\[\text{i.e., } v(\Pi) = \bigcup \{ v'(\Pi)_p(\{|T^{[\alpha]}|\}) : p \in \Sigma \} , \quad \text{or} \]

\[(\ast \ast \ast) \alpha \in v(\Pi) \iff \exists p \in \Sigma[\alpha \in v'(\Pi)_p(\{|T^{[\alpha]}|\})]. \]

Lemma 3. For any \(p \in \Sigma \), \(v(\Pi) \land LHB_p = v'(\Pi)_p(\{|T^{[\alpha]}|\}) \), where \(v(\Pi) \) is considered by \((\ast \ast \ast) \).

Proof. From \((\ast \ast \ast) \) obviously follows that \(v'(\Pi)_p(\{|T^{[\alpha]}|\}) \subseteq v(\Pi) \). Moreover, if \(v'(\Pi)_p(\{|T^{[\alpha]}|\}) \subseteq v(\Pi) \) for every \(p \in \Sigma \), then \(v(\Pi)_p(\{|T^{[\alpha]}|\}) \subseteq LHB_p \). Therefore, \(v'(\Pi)_p(\{|T^{[\alpha]}|\}) \subseteq v(\Pi) \land LHB_p \). Conversely, from \(v'(\Pi)_p(\{|T^{[\alpha]}|\}) \subseteq LHB_p \) we get \(v(\Pi) \land LHB_p \subseteq v'(\Pi)_p(\{|T^{[\alpha]}|\}). \)

Corollary 4. \(\Sigma^+ \models A \Rightarrow \Sigma^+ \models A . \)

Proof. From \(\Sigma^+ \models A \) for any \(p \in \Sigma \) we obtain \(v(A)_p = v(A) \land LHB_p = LHB_p = \text{true}_p(\{|T^{[\alpha]}|\}) \). By Lemma 1, \(v'(A)_p(\{|T^{[\alpha]}|\}) = \text{true}_p(\{|T^{[\alpha]}|\}) \), i.e., \(v'(A) = \text{true} \). "}

Corollaries 2 and 4 give us the proof of the Theorem 1. Finally, from \(\vdash L_{\Sigma^+} A \iff \Sigma \models A \Rightarrow \Sigma^+ \models A \) we get the proof of the following theorem:

Theorem 2. \(\vdash L_{\Sigma^+} A \iff \Sigma^+ \models A. \)
References
