Iwona Marek

ADEQUATE SEMANTICS FOR NON-PSEUDOAXIOMATIC CONSEQUENCE OPERATION

The work refers to W. A. Pogorzelski and P. Wojtylak’s construction of consequence operation defined by quasi algebra (cf. [2], Chapter II). We propose, following J. Czelakowski’s suggestion, a modification of the definition of a q-filter, which enables us to generate the class of all non-pseudoaxiomatic consequence operations (Theorem 2).

1. By a quasi ordered algebra for a language $S = < S, F_1, \ldots, F_n >$ freely generated by a set of propositional variables $V = \{ p_1, p_2, \ldots \}$ (shortly, q-algebra), we understand any pair of the form $A = < A, R >$, where $A = < A, f_1, \ldots, f_n >$ is an algebra similar to S, and R is a quasi-ordering on A. A consequence C is said to be pseudoaxiomatic (cf. 1) iff it is structural and $C(\emptyset) \neq \emptyset$. Theorem 1 ([2], p.75). If C is a structural finitistic consequence operation and $C(\emptyset) \neq \emptyset$, then there exists a q-algebra A, such that $C = C^q_A$.

2. Let A be any q-algebra for the language S. Definition 1 comes from [2]:

Definition 1. A non-empty set $B \subseteq A$ is a q-filter in A iff

\[
\forall H \in Fin(B), B_n(B_1(H)) \subseteq B, \text{ where for every } X \subseteq A
\]

\[
B_n(X) = \{ a \in A : bRa \text{ for each } b \in X \}
\]

\[
B_1(X) = \{ a \in A : aRb \text{ for each } b \in X \}.
\]

The set of all q-filters in A and a consequence operation generated by a generalized matrix $M = < A, q\mathcal{F}(A) >$ are denoted by $q\mathcal{F}(A)$ and C^q_A respectively.
3. We modify the notion of a q-filter.

Definition 2. A set $B \subseteq A$ is a q^*-filter iff $B_u(B(B)) \subseteq B$.

Let $q^*\mathcal{F}(A)$ denote the set of all q^*-filters and C^q_A a consequence operation generated by $M = \langle A, q^*\mathcal{F}(A) \rangle$.

Fact 1. C^q_A is a structural consequence.

Fact 2. $C^q_A(\emptyset) = \bigcap\{\alpha \in S : h(\alpha) \in B_u(A), \text{ for every } h \in \text{Hom}(S, A)\}$.

Lemma 1. Let $M = \langle A, D \rangle$ be any matrix with $D \neq \emptyset$; then there exists a quasi ordering on A, such that:

$$C_M = C^q_A.$$

We shall say that a q-algebra A is strongly adequate for the consequence C provided that $C = C^q_A$. Let us denote the class of all consequences having strongly adequate q-algebra by ζ^q.

Fact 3. $C_0 \notin \zeta^q$, where C_0 is the almost-inconsistent consequence.

For any family $A_i = \langle A_i, R_i \rangle$ ($i \in I$) of q-algebras, we define the product of q-algebras $\bigcap A_i$ is a q-algebra.

Lemma 2. If $\{A_i\}_{i \in I}$ is a family of q-algebras, then

$$C^q_{\bigcap A_i} = \inf C^q_{A_i}.$$

Using the properties mentioned above we shall prove a theorem which characterizes the class ζ^q.

Theorem 2. $C \in \zeta^q$ iff C is not a pseudoaxiomatic consequence.

Proof. (\Rightarrow) Let $C \in \zeta^q$, thus on the basis of Fact 1 it is enough to show that $C(\emptyset) = \bigcap\{C(X) : \emptyset \neq X \subseteq S\}$.

The inclusion from left to right is obvious. To prove the converse let us suppose that there exists a formula $\beta \in S$ such that:

1. $\beta \in \bigcap\{C(X) : \emptyset \neq X \subseteq S\}$

and
(2) \(\beta \not\in C(\emptyset) \).

But \(C \in \zeta^q \) and therefore

(3) \(C = C^q_A \) for some \(q \)-algebra \(A = < A, R > \).

Thus from Fact 2 there exist \(h \in Hom(S, A) \) and \(a_0 \in A \) such that

(4) \(non(a_0Rh(\beta)) \).

Let \(B_0 = \{ x : a_0Rx \} \) and \(p_0 \in V - V(\beta) \) (\(V(\beta) \) denotes the set of all propositional variables occurring in the formula \(\beta \)). We define a mapping \(h_1 : V \to A \) in the following way:

\[
h_1(p_i) = \begin{cases} a_0 & \text{iff } p_i = p_0 \\ h(p_i) & \text{iff } p_i \neq p_0 \end{cases}
\]

and we extend it to \(H \in Hom(S, A) \). In this situation

(5) \(B_0 \in q^*F(A) \),

(6)

(7)

Thus \(\beta \not\in C^q_A(\{p_0\}) \) which contradicts (1).

(\(\Leftarrow \)) Assume that \(C \) is a structural consequence and let \(C(\emptyset) = \cap \{ C(X) : \emptyset \neq X \subseteq S \} \). Put \(\mathcal{M} = < S, C(X) : \emptyset \neq X \subseteq S > \). It determines the family of matrices of the form

(1) \(M_X = < S, C(X) > \) for every \(\emptyset \neq X \subseteq S \)

in the evident way.

But, according to Lemma 1, for every \(M_X \) there is a \(q \)-algebra \(A_X = < S, R_X > \) such that

(2) \(C^q_X = C_{M_X} \).

Let us put

(3) \(A = \cap A_X \).

We shall show that \(A \) is a strongly adequate \(q \)-algebra for \(C \), i.e. that

(4) \(C^q_A(Y) = C(Y) \) for all \(Y \subseteq S \).

(\(\subseteq \)) Let us consider two situations.

1) \(Y \neq \emptyset \), so

\[
C^q_A(Y)^{Lemma 2} \cap_{X \neq \emptyset} C^q_{A_X}(Y) \subseteq C^q_{A_Y}(Y)^{Lemma 1}C_{M_Y}(Y) = C(Y)
\]

2) \(Y = \emptyset \), then
Let us suppose that there exist \(\alpha \in S \) and \(Y \subseteq S \) such that
1) \(\alpha \in C(Y) \)

and
2) \(\alpha \notin C_{A_X}^q(Y) \).

It results from Lemma 2 that
3) \(\alpha \notin C_{A_X}^q(Y) \) for some \(X \neq \emptyset \).

Therefore, according to Lemma 1, because \(C_{A_X}^q = C_{M_X} \), we get that there exists \(h \in \text{End}(S,S) \) such that
4) \(h(Y) \subseteq C(X) \)

and
5) \(h(\alpha) \notin C(X) \).

Since \(C \) is structural from 1) we get:
6) \(h(\alpha) \in h(C(Y)) \subseteq C(h(Y)) \subseteq C(C(X)) = C(X) \)

which contradicts 5).

References

Section of Logic
Institute of Philosophy
Silesian University
Katowice, Poland