STRONG GENERATIVE CAPACITY
OF CLASSICAL CATEGORIAL GRAMMARS

Classical categorial grammars (CCG's) are the grammars introduced by Ajdukiewicz [1] (under the influence of Leśniewski's theory of semantical categories) and formalized by Bar-Hillel [2], Bar-Hillel et al. [3]. In [3] there is proved the weak equivalence of CCG's and context-free grammars (CFG's) [6]. In this note we characterize the strong generative capacity of finite and rigid CCG's, i.e. their capacity of structure generation. These results are more completely discussed in [4], [5].

Let V denote a countable set whose members will be referred to as atoms. The set $FS(V)$, of functorial structures (F-structures) over V, is defined as follows:

1. $V \subseteq FS(V)$,
2. if $A_1, \ldots, A_n \in FS(V)$ ($n \geq 2$) then $(A_1 \ldots A_n)_i \in FS(V)$, for all $1 \leq i \leq n$.

Given an F-structure $(A_1, \ldots, A_n)A_i$ is called the functor, and each A_j, $j \neq i$, an argument of this F-structure. The notion of a substructure of some F-structure is defined in the natural way. A_1, \ldots, A_n are called parts of (A_1, \ldots, A_n). The size of $A \in FS(V)(s(A))$ is the maximal number of parts of substructures of A. A sequence A_0, \ldots, A_n of substructures of $A \in FS(V)$ is called a branch in A (of length n) if, for all $1 \leq i \leq n, A_i$ is a part of A_{i-1}. A branch A_0, \ldots, A_n, such that A_i is the functor of A_{i-1}, for all $1 \leq i \leq n$, is called an F-branch. The external degree of $A \in FS(V)(d_e(A))$ equals the length of shortest branches in A which lead from A to some atom, and the degrees of $A(d(A))$ is the maximal $d_e(B)$, for
B ranging over substructures of A. The F-degree of \(A \in FS(V)(d_F(A)) \) equals the maximal length of F-branches in A.

Any set \(L \subseteq FS(V) \) is called a functorial language (F-language) over \(V \). By \(\text{sub}(L) \) we denote the set of all substructures of the F-structures from \(L \). We also set:

\[
\begin{align*}
(3) \quad &d(L) = \sup\{d(A) : A \in L\}, \\
(4) \quad &d_F(L) = \sup\{d_F(A) : A \in L\}, \\
(5) \quad &s(L) = \sup\{s(A) : A \in L\},
\end{align*}
\]

and we call these numbers the degree, F-degree and size of \(L \), respectively. \(FS(V) \) can be treated as the absolutely free algebra generated by \(V \) with operations \((. . .)_i \). By \(\text{Int}_L \) we denote the largest congruence on the structure \((FS(V), L) \) (treat \(L \) as a monadic predicate on \(FS(V) \)), and we call it the intersubstitutability relation for \(L \). We define the index of \(L \) \((\text{ind}(L)) \) as the number of equivalence classes of \(\text{Int}_L \). Clearly, \(d(L), d_F(L), s(L) \) and \(\text{ind}(L) \) may be finite or countably infinite.

Phrase structures (P-structures) amount to F-structures which lack functor markers. By \(PS(V) \) we denote the set of all P-structures over \(V \). For \(A \in PS(V) \), we define \(s(A), d_e(A), d(A) \) as for F-structures. Similarly, for \(L \subseteq PS(V) \) (such a set \(L \) is called a P-language), we define \(d(L), s(L) \) and \(\text{ind}(L) \) as for the case of F-languages.

We fix, a denumerable set \(Pr \) of primitive types and we define \(Tp = FS(Pr) \). The members of \(Tp \) are called types. By a CCG we mean a triple \(G = (V_G, I_G, s_G) \), such that: \(V_G \) (vocabulary) is a countable set, \(I_G \) (initial type assignment) is a function from \(V_G \) into \(P(Tp) \), and \(s_G \) (principal type) \(\in Pr \). By \(Tp(G) \) we denote the union of all \(I_G(v), \) for \(v \in V_G \). A CCG \(G \) is said to be finite (resp. rigid) if \(Tp(G) \) is finite (resp. \(I_G(v) \) contains at most one type, for all \(v \in V_G \)).

Each CCG \(G \) determines the terminal type assignment \(T_G \), being defined as the smallest subset of \(FS(V_G) \times Tp \) fulfilling the conditions:

\[
\begin{align*}
(6) \quad &\text{if } x \in I_G(v) \text{ then } vT_Gx, \\
(7) \quad &\text{if } A_iT_G(x_1 \ldots x_n)_i \text{ and } A_jT_Gx_j, \text{ for } j \neq i, \text{ then } (A_1 \ldots A_n)_iT_Gx_i.
\end{align*}
\]

We identify \(T_G \) with a function \(T_G : FS(V_G) \to P(Tp) \).
Now, the F-language generated by a CCG $G(FL(G))$ consists of all $A \in FS(V_G)$ such that $s_G \in T_G(A)$. By dropping functor markers in the F-structures from $FL(G)$ we get the P-language generated by $G(PL(G))$, and by dropping the brackets in the P-structures from $PL(G)$ we get the language generated by $G(L(G))$. It is known [3] that the languages of finite CCG’s with a finite vocabulary coincide with those of CFG’s. Our notion of a CCG admits both V_G and I_G infinite (see [7] for some nice applications of CCG’s with an infinite initial type assignment).

An F-language is said to be (resp. finitely, rigidly) stratifiable if it equals $FL,(G)$, for some (resp. finite, rigid) CCG G. We prove:

Theorem 1. Each F-language is stratifiable.

Theorem 2. An F-language L is finitely stratifiable iff each of the numbers $s(L), d_F(L)$ and $ind(L)$ is finite.

A P-language is said to be (resp. finitely) stratifiable if it equals $PL(G)$, for some (resp. finite) CCG G. By theorem 1, each P-language is stratifiable. As concerns finite stratifiablity, we obtain:

Theorem 3. A P-language L is finitely stratifiable iff each of the numbers $s(L), d(L)$ and $ind(L)$ is finite.

To characterize rigid stratifiability we need an auxiliary notion. For $L \subseteq FS(V), A, B \in FS(V)$ we write $A \prec L B$ if, for some $C \in sub(L)$, B is the functor of C and, either A is an argument of C, or $A \mathbin{Int}_L C$.

Theorem 4. An F-language L is rigidly stratifiable iff there hold the following conditions:

(i) the relation \prec_L is well-founded,
(ii) if $A, B \in L$ then $A \mathbin{Int}_LB$,
(iii) if $A \prec_L B$ then $B \notin L$,
(iv) if $(A_1 \ldots A_n)_i, (B_1 \ldots B_m)_j \in sub(L)$ and $A_i \mathbin{Int}_LB_j$, then $m = n$, $i = j$ and $A_k \mathbin{Int}_LB_k$, for all $1 \leq k \leq n$,
(v) if $(A_1 \ldots A_n)_i, Int_L(B_1 \ldots B_n)_j \in sub(L)$ and $A_j \mathbin{Int}_LB_j$, for all $j \neq i$, then $A_i \mathbin{Int}_LB_i$.

References

Institute of Mathematics
Adam Mickiewicz University
Poznań, Poland