A NOTE ON IMPLICATIONAL INTERMEDIATE CONSEQUENCES

1. A structural consequence operation C is s.s.c. (strongly structural complete) if $C(\emptyset) = C(\emptyset)$ implies $C' = C$ for each (structural) strengthening $C' \geq C$. C is s.f.a. (strongly finite approximable) if G is determined by a set K of finite matrices; if K itself can chosen to be finite, C is said to be tabular (alias strongly finite).

In the sequel the letters C, D range exclusively over \to-intermediate consequences, i.e. consistent structural $C \geq C_H$ where C_H is the intuitionistic consequence restricted to the propositional language $F(\to)$. C_H is simply the smallest structural consequence C in $F(\to)$ such that Modus Ponens holds in C and

$$(dt) \ Q \in C(X, P) \Rightarrow P \to Q \in C(X) \quad (\text{deduction theorem})$$

where X, Y range over formula sets, P, Q over formulas. In Section 2 we will prove the following

Theorem. C is s.s.c. iff C is s.f.a. Moreover, each s.s.c. C satisfies (dt).

Let \triangle denote the set of all C satisfying (dt) and $\triangle^\omega = \{ C \in \triangle | C \ \text{finitary} \}$. The $C \in \triangle^\omega$ are just the axiomatic strengthenings of C_H. Clearly, $C \in \triangle$ implies $C^\omega \in \triangle^\omega$, where C is the finitary cernel of $C\ [P \in C^\omega(X) \iff (\exists \ \text{finite } Y \subseteq X) \ (P \in C(Y))]$, but the converse may be wrong.

To each C there is a smallest D with $D(\emptyset) = C(\emptyset)$, denoted by C^δ. Obviously $C^\delta \in \triangle^\omega$. There is also the largest D with $D(\emptyset) = C(\emptyset)$ (in which hold all sequential rules admissible for $C(\emptyset)$), denoted by C^δ. Clearly, C^δ is s.s.c. (the strong structural completion of C); moreover, if D is s.s.c.
and $D(\emptyset) = C(\emptyset)$ then $D = C^5$ (see e.g. [2] for these simple facts). Thus, the conditions C is s.s.c, $C = C^5$, each admissible rule for $C(\emptyset)$ holds in C, are all equivalent. Notice that the finitary cernel of C^5 is structural complete in the finitary sense.

Here some corollaries from the Theorem. The first one is the main result in [4]:

Corollary 1. Let $C \in \Delta^\omega$. Then C is s.s.c. iff C is tabular.

Proof. If C is tabular then C is trivially s.f.a. hence s.s.c. by the Theorem. If C is non-tabular, consider the s.f.a. $C^\prime = \inf \{D | C(\emptyset) \subseteq D(\emptyset) & D \text{ tabular}\}$. By the Theorem, C^\prime is s.s.c and $C^\prime \in \Delta$. Moreover, $C^\prime(\emptyset) = C(\emptyset)$ since each \rightarrow-intermediate logic is tabular approximable ([1]). Thus, $C^\prime = C^5$. As is well known, a non-tabular s.f.a. intermediate $D \in \Delta$ cannot be finitary.* Thus, $C \neq C^5$ because C is finitary while C^5 is not.

Corollary 2. Each finitary C satisfies (dt).

Proof. Let $X = \{P_0, \ldots, P_{n-1}\}$. It suffices to show

(1) $P_n \in C(X) \Rightarrow P_0 \rightarrow \ldots \rightarrow P_n \in C(\emptyset)$.

Let $P_n \in C(X)$. Then $P_n \in C^5(X)$. Thus, $P_0 \rightarrow \ldots \rightarrow P_n \in C^5(\emptyset) = C(\emptyset)$ because $C^5 \in \Delta$ by the Theorem.

Hence, the finitary cernel of each C satisfies (dt). Of course, this is no argument in favour of a positive answer to

Question 1. Does every $C \geq C_H$ satisfy (dt)?

It is obvious that the infinitary sequential rule

$$\rho = \{(p_i \rightarrow p_j) \rightarrow (p_j \rightarrow p_i) \rightarrow p_0 | 1 < i < j\}/p_0$$

holds for each s.f.a. and hence s.s.c. C. Let C^ρ denote the smallest $D \geq C$ such that ρ holds in D. Then $C^\rho \leq C^5$ and all subdirect irreducible models of C^ρ are finite. Moreover, $C^\rho \in \Delta$.

*This nice exercise was communicated to me by A. Wroński in 1978: Put $X = \{(p_i \rightarrow p_j) \rightarrow (p_j \rightarrow p_i) \rightarrow p_0 | 0 < i < j < \omega\}$. Then $p_0 \in D(X)$ but $p_0 \notin D(Y)$ for finite $Y \subseteq X$ (use dt and the fact that $D(\emptyset)$ is determined by subdirect irreducibles). By the theorem, the assumption $D \in \Delta$ is superfluous. We mention that in the presence of \lor the assumption $C \in \Delta$ cannot completely be omitted but replaced by the weaker assumption C is monotonic (because finitary monotonic C are determined by subdirect irreducible algebraic matrices, see [5]).
QUESTION 2. Is $C^δ = C^ρ$ (in particular for $C = C_H$)?

If the answer is no, perhaps some other axiomatization of $C^δ$ with finitely many rules will be found.

Remark. The Theorem and its Corollaries fail for $C \geq C_I$ = intuitionistic consequence in the full propositional language. It seems that $C^δ$ is s.f.a. only in particular cases e.g. if $C(\emptyset)$ is locally finite. There are many open questions concerning the C with $C(\emptyset) = C_I(\emptyset)$. E.g., is $C^δ_I$ or its finitary kernel finitely based? Notice that Δ is a complete sublattice of the lattice of all $C \geq C_I$. Let C^A be the largest C with $C(\emptyset) = C_I(\emptyset)$ which satisfies (dt). Perhaps there is a chance to characterize C^A.

2. We will now prove the theorem. Write $P \equiv Q$ for $C_H(P) = C_H(Q)$.

Lemma 1. Define $e \in Sb$ by $e : p \mapsto (Q \rightarrow p), p \in Var$. Then $eP \equiv Q \rightarrow P$.

Proof. Induction on P. Observe (dt).

Lemma 2. If C is tabular then $C = C^δ$.

Proof. As was shown in [3], $C^δ$ is structural complete in the finitary sense. Since C is finitary, $C \leq C^δ$, hence $C = C^δ$.

Lemma 3. Each s.f.a. C is s.s.c.

Proof. Let $C = \inf \{C_i | i \in I\}$, each C_i tabular. Suppose $Q \not\in C(X)$ so that $Q \not\in C_k(X)$ for some $k \in I$. Since C_k is tabular, there is, obviously, some $f \in Sb$ such that $Q' \not\in C_k(X')$ with $X' = FX, Q' = fQ$, and X' contains a finite number of variables only. By Diego [1], $C_H(X') = C_H(Y)$ for some finite $Y = \{P_1, \ldots, P_n\}$. Define $e_j \in Sb$ by $e_j : p \mapsto (P_j \rightarrow p)$ and put $e = e_1 \circ \ldots \circ e_n$. Then $eP \equiv P_1 \rightarrow \ldots \rightarrow P_n \rightarrow P$ (Lemma 1), and therefore $eY \subseteq C_H(\emptyset) \subseteq C(\emptyset)$. But $eQ' \equiv P_1 \rightarrow \ldots \rightarrow P_n \rightarrow Q' \not\in C_k(\emptyset)$ since $Q' \not\in C_k(Y)$. Thus, $eQ' \not\in C(\emptyset)$ and for $d = e \circ f$ we obtain $dX \subseteq C(\emptyset)$, but $dQ \not\in C(\emptyset)$. Therefore, C is s.s.c.

Proof of the Theorem. Let C be s.s.c. and consider the s.f.a. $C' = \inf \{D | C(D) \subseteq C(\emptyset) & D \text{ tabular} \}$. Then $C'(\emptyset) = C(\emptyset)$ ([1]) and C' is s.s.c. by Lemma 3. Therefore $C = C'$, since there is only one s.s.c. D with a
given set of tautologies. Thus, \(C \) is s.f.a. The converse is just Lemma 3. Now let \(C \) be s.s.c. Then \(C \) is s.f.a. by the proceeding. Hence \(C \in \Delta \), because each tabular \(D \) satisfies \((dt)\) by Lemma 2.

References