The following logics are the most noteworthy from the perspective of the calculus of combinators: the Hilbert’s positive implicational logic (i.e. purely implicational fragment of the intuitionistic propositional calculus), the Church’s weak theory of implication (i.e. purely implicational fragment of the relevant system R), the BCK-logic, and the BCI-logic. Their significance is due to a certain correspondence between combinators and implicational formulas (see for example [1]). The first three logics mentioned have been immensely investigated but it was not so in case of the remaining one. The BCI-logics was mentioned by A. N. Prior in the second edition of his Formal Logic of 1962 where it was credited to C. A. Meredith and dated in 1956 (see [4]). According to the definition the BCI-logic is determined by the following rules:

\((B) \vdash (\alpha \rightarrow \beta) \rightarrow ((\gamma \rightarrow \alpha) \rightarrow (\gamma \rightarrow \beta))\),
\((C) \vdash (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow (\beta \rightarrow (\alpha \rightarrow \gamma))\),
\((I) \vdash \alpha \rightarrow \alpha\),

and $\alpha, \alpha \rightarrow \beta \vdash \beta$.

The set of theorems of the BCI-logic is decidable as it was shown by S. Jaśkowski in 1963 (see [3]).
2.

In 1966 K. Iseki introduced the concept of BCI-algebra as an algebraic counterpart of the BCI-logic. In his paper [2] in the introduction Iseki writes: “In this note, we shall consider a new algebra induced by the BCI-system of propositional calculus by C. A. Meredith quoted into A. N. Prior, Formal Logic ([4], p. 316)”. Let us cite the Iseki’s definition: “Let $M = (X, 0, \ast)$ be an abstract algebra consisting of a set X with an element 0 and binary operation \ast. If M satisfies the following conditions BCI 1-5, it is called a BCI-algebra:

$BCI 1 \ (x \ast y) \ast (x \ast x) \leq x \ast y,$
$BCI 2 \ x \ast (x \ast y) \leq y,$
$BCI 3 \ x \leq x,$
$BCI 4 \ x \leq y, y \leq x$ imply $x = y,$
$BCI 5 \ x \leq 0$ implies $x = 0,$

where $x \leq y$ means $x \ast y = 0$.

3.

Unfortunately the above definition fails to describe a class of algebras adequate for BCI-logic or even for the set of theorems of BCI-logic, and thus the term BCI-algebra is misleading. One can prove that BCI-algebras as defined in [2] determine a logic which is stronger then BCI-logic. To be precise we have the following.

Completeness Theorem. The class of BCI-algebras is strongly adequate for the logic determined by the following rules:

$\vdash (\alpha \rightarrow \beta) \rightarrow ((\gamma \rightarrow \alpha) \rightarrow (\gamma \rightarrow \beta)),$
$\vdash (\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\beta \rightarrow (\alpha \rightarrow \gamma)),$
$\vdash \alpha,$
$\alpha, \alpha \rightarrow \beta \vdash \beta,$
$\alpha, \beta \vdash \alpha \rightarrow \beta.$
4.

It should be mentioned that conditions used by Iseki in his definition of \(BCI\)-algebras are not independent. Equivalently one can define \(BCI\)-algebras as all algebras \(K = (A, 0, \ast)\) of type \((0, 2)\) satisfying:

\[
\begin{align*}
\ast1 & \quad a \ast 0 = a, \\
\ast2 & \quad ((a \ast b) \ast (a \ast c)) \ast (c \ast b) = 0, \\
\ast3 & \quad a \ast b = b \ast a = 0 \text{ iff } a = b.
\end{align*}
\]

For the proof it suffices to note that \((a \ast (a \ast b)) \ast b = ((a \ast 0) \ast (a \ast b)) \ast (b \ast 0) = 0.\)

5.

The above definition makes it clear that \(BCI\)-algebras form a quasivariety while the result of A. Wroński [5] yields the following

FACT. \(BCI\)-algebras do not form a variety.

References