Marek Palasinski

IDEALS IN BCK-ALGEBRAS WHICH ARE LOWER SEMILATTICES

This is an abstract of the paper presented at the seminar held by prof. A Wroński at the Jagiellonian University.

It was shown in [1] that if X is a BCK-algebra then (X, \leq) is a poset, and moreover if X is a commutative BCK-algebra, i.e. $x \ast (x \ast y) = y \ast (y \ast x)$ holds in X, then (X, \leq) is a lower semilattice. In this paper we consider properties of certain ideals in these BCK-algebras which are lower semilattices as referred to [1] and [2]. The following example shows that the class of BCK-algebras considered here is considerably wider than the class of commutative BCK-algebras.

Example. Consider the set $\{0, 1, \ldots\}$. We define

$$x \ast y = \begin{cases}
0 & \text{if } x \leq y \\
1 & \text{if } 0 \neq y < x \\
x & \text{if } 0 = y < x
\end{cases}$$

It is easy to check that $\langle\{0, 1, \ldots\}, \ast, 0\rangle$ is a non-commutative BCK-algebra. (X, \leq) is a lattice.

Let us recall some definitions.

A non-empty subset A of a BCK-algebra X is called an ideal iff

1. $0 \in A$;
2. $x \in A$ and $y \ast x \in A$ imply $y \in A$.

A proper ideal of a BCK-algebra X is maximal if it is not properly contained in any proper ideal in X.
Let X be a BCK-algebra and B a subset of X. By (B) we denote an ideal in a BCK-algebra X generated by B. If B is finite, i.e. $B = \{b_1, \ldots, b_k\}$, we shall write $(b_1, \ldots, b_k]$ instead of $(\{b_1, \ldots, b_k\}]$.

An ideal A in a BCK-algebra is called irreducible if $A = B \cap C$ implies $A = B$ or $A = C$, for ideals B, C. Let X be a BCK-algebra which is a lower semilattice. We shall call an ideal A in X prime if for any elements a, b of X $\inf\{a, b\} \in A$ implies $a \in A$ or $b \in A$. This notion generalizes the notion of a prime ideal in a commutative BCK-algebra introduced by K. Iseki in [3].

In the sequel, by a BCK-algebra we shall mean a BCK-algebra which is a lower semilattice as a poset. We shall denote $\inf\{x, y\}$ by $x \land y$.

We have the following Lemma:

LEMMA. In a BCK-algebra X, if for some natural numbers m and n $a \ast^m x = a \ast^n y = 0$, then there exists a natural number p such that $a \ast^p (x \land y) = 0$, where $a \ast^m x$ denotes $(\ldots (a \ast x) \ast \ldots) \ast x$, m-times.

The above Lemma has some interesting consequences.

COROLLARY 1. Let X be a BCK-algebra, P an ideal in X. Then for any $x, y \in X$, if $x \land y \in P$ then $(P \cup \{x\}] \cap (P \cup \{y\}) = P$.

COROLLARY 2. In a BCK-algebra X

$$(x \land y) \cap (y \land y) = (x \land y)$$

We shall call a non-empty subset S of a BCK-algebra X \land-closed iff for any $x, y \in X, x, y \in S$ implies $x \land y \in S$.

COROLLARY 3. Let X be a BCK-algebra, S a non-empty \land-closed subset of X such that $0 \notin S$. Then there exists a maximal ideal P in the set of all ideals I in X such that $I \cap S = \emptyset$, moreover P is a prime ideal.

COROLLARY 4. If P is a maximal ideal in a BCK-algebra X then P is a prime ideal.

Using Corollaries one can prove the following two Theorems:

THEOREM 1. In a BCK-algebra, the following conditions are equivalent

(i) P is an irreducible ideal;
(ii) P is a prime ideal;
(iii) for any ideals $A, B, A \cap B \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Theorem 2. The lattice of all ideal of a BCK-algebra X is distributive.

Remark. Theorem 2 holds true for an arbitrary BCK-algebra.

References

Mathematical Institute
Jagiellonian University
Cracow