EVERY TWO-VALUED PROPOSITIONAL CALCULUS
HAS THE INTERPOLATION PROPERTY

It is known that two-valued calculi, one with implication, negation (+
other connectives) and the other pure implicational (cf. [1]) have the Inter-
polation Property. In this paper we prove that every two-valued calculus
with implication + other connectives has this property.

Let $L = (L, \text{Con})$ be an algebra of formulas formed in the usual manner
by means of propositional variables and operations from Con denoted by
propositional connectives. We assume that Con contains the implication
(\rightarrow) and that all operations of Con are finite. Let M be a matrix (connected
with the language L) with the set $\{0, 1\}$ as the universum and 1 as the
distinguished value. We also assume that \rightarrow is defined in M in the usual
manner. Symbols V_a ($a \in L$) and T denote the set of variables of the
formula a and the set of tautologies of the matrix M, respectively.

Theorem. If $a \rightarrow b \in T$ and $V_a \cap V_b \neq \emptyset$, then there exists a formula c
such that $V_c \subseteq V_a \cap V_b$ and $a \rightarrow c, c \rightarrow b \in T$.

Consider two cases: 1°. there exists an n argument ($n \geq 0$) connective
f of Con such that $f(1, \ldots, 1) = 0$, 2°. such a connective does not exist.

If 1° holds, then the formula: $p \rightarrow f(p \rightarrow p, \ldots, p \rightarrow p)$ defines the
classical negation, and in this case the proof is well-known. Assume that the
second case holds. Denote the set of formulas $V_a \cap V_b \cup \{p \rightarrow p : p \in V_a \cap V_b\}$
by the symbol W.

Let S be the set of all substitutions s such that for every variable p the
following conditions are satisfied:

if $p \in V_a - V_b$ then $sp \in W$,
Every Two-Valued Propositional Calculus Has the Interpolation Property

if \(p \not\in V_a - V_b \) then \(sp = p \).

Since the set \(V_a - V_b \) is finite, then the set \(S \) is also finite. So, let \(c = s_1 a \lor \ldots \lor s_k a \), where \(\{s_1, \ldots, s_k\} = S \). (The symbol \(\lor \) denotes the classical disjunction. This connective is obviously defined by \(\rightarrow \)). If \(s \in S \), then \(s(a \rightarrow b) = sa \rightarrow b \). Hence \(c \rightarrow b \in T \). Now, we prove that \(a \rightarrow c \in T \).

Suppose that for some valuation \(v \), \(va = 1 \) and \(vc = 0 \). Hence and by assumption 2\(\circ \), there is a variable \(p \in V_a \cap V_b \) such that \(vp = 0 \). Let \(s \) be a substitution such that for every variable \(q \):

\[
\begin{align*}
 \text{if } q \in V_a - V_b & \text{ then } sq = \begin{cases}
 p & \text{if } vq = 0 \\
 p \rightarrow p & \text{otherwise}
 \end{cases} \\
 \text{if } q \not\in V_a - V_b & \text{ then } sq = q.
\end{align*}
\]

So for every variable \(q \), \(vq = vsq \). Hence \(va = vsa \). It can easily be noticed that \(s \in S \). So \(1 = vsa \leq vc \). Contradiction.

References

The Catholic University of Lublin
The Pedagogical College, Cracow