SOME REMARKS ON THE LOGIC OF VAGUENESS

Our objective here is to offer a contribution to the study of the logic of vagueness. We restrict ourselves to “vagueness related to negation”. This kind of vagueness happens when the law of excluded middle or the law of contradiction is not valid. We also consider only cases in which these two laws are not equivalent (when these laws are not valid but equivalent, we obtain systems related to dialectical logic like those suggested in [3]). Consequently, we have four cases of vagueness related to negation: 1) The law of excluded middle is valid but not the law of contradiction; 2) The law of contradiction is valid but not the law of excluded middle; 3) One of these laws is valid but not both; 4) Both these laws are not valid. For each case we present a logical system that formalizes the situation. We develop here only the propositional calculi; the corresponding first-order predicate calculi are easy to construct. The logical system for the first case is the system C_1 of da Costa [2]. In a certain sense, the logical systems for the first two cases are “duals”. The semantical study of the systems presented here will be done in [1].

1. The system V_0

This is the system corresponding to the case in which the law of excluded middle and the law of contradiction are not valid, and not also equivalent. In this section as well as in the following, the terminology and notations are those of Kleene [4].

Definition.

\[
\begin{align*}
A^0 & \equiv \neg (A \land \neg A) \\
0A & \equiv \neg (A \lor \neg A) \\
A^+ & \equiv \neg (A \land A^0) \\
A^+ & \equiv \neg (A \lor (\neg A \land A^0))
\end{align*}
\]
The postulates of V_0 are the following:

1. $A \supset (B \supset A)$
2. $(A \supset B) \supset ((A \supset (B \supset C)) \supset (A \supset C))$
3. $A, A \supset B/B$
4. $A \& B \supset A$
5. $A \& B \supset B$
6. $A \supset (B \supset A \& B)$
7. $A \supset A \lor B$
8. $B \supset A \lor B$
9. $(A \supset C) \supset ((B \supset C) \supset (A \lor B \supset C))$
10. $0_A \& 0_B \& (A \supset B) \& (A \supset \neg B) \supset \neg A$
11. $A^0 \supset (B \supset A^0) \& (A \supset B^0) \& (A \lor B)^0$
12. $0_A \& 0_B \supset 0 (A \supset B) \& 0 (A \& B) \& 0 (A \lor B)$
13. $A^0 \supset (\neg A)^0$
14. $0_A \supset 0 (\neg A)$
15. $\neg^* \neg^* A \supset A$

Theorem 1.1. The strong negation on $V_0(\neg^*)$ has all the properties of the classical negation.

Proof. It is enough to prove $(A \supset B) \& (A \supset \neg^* B) \supset \neg^* A$.

Theorem 1.2. Suppose that the formula of $\Gamma \cup \{F\}$ are formulas of C_0 (the classical propositional calculus), whose atomic components are P_1, \ldots, P_n. If $\vdash_{C_0} F$, then $P_1^{+, \ldots, P_n^+, \Gamma \vdash_{V_0} F}$.

Theorem 1.3. Let A be a formula of C_0 and A^{*} the formula obtained from A by replacing \neg by \neg^*. If $\vdash_{C_0} A$, then $\vdash_{V_0} A^{*}$.

Theorem 1.4. If $\vdash A$ in the classical positive logic, then $\vdash A$ in V_0.

Proof. Observe that Peirce’s law is a theorem of V_0.

Theorem 1.5. In V_0 we prove the following schemas and rules:

- $A \& B^0 \& (A \supset B) \& (A \supset \neg B) \supset \neg A$ If $\vdash A$ then $\vdash^o A$
- $A^0 \& B^0, \neg B \supset \neg A \vdash A \supset B$ \quad $A \& (A \supset B) \& (A \supset \neg B \& B^0) \supset \neg A$
Theorem 1.6. V_0 is finitely trivializable.

Proof. In V_0 there is a formula (of type $A \& \neg A \& A^0$) from which it is possible to obtain every formula.

2. The system V_1

This is the system corresponding to the case in which for every formula the law of excluded middle or the law of contradiction is valid but not both.

Definition. $\neg^* A = df A^0 \& (A \supset \neg A)$

The postulates of V_1 are 1-14 of V_0 plus:

15. $A \lor \neg^* A \supset A$

16. $A \lor \neg A$

Theorem 2.1. V_0 is a proper subsystem of V_1.

Proof. It is obvious that V_0 is a subsystem of V_1, and it is easy to exhibit formulas (e.g. $A^0 \lor A^0$) that are theorems of V_1 but not of V_0.

With obvious modifications, Theorems 1.1-1.4 and 1.6 are valid in V_1.

Theorem 2.2. Besides the schemas and rules of Theorem 1.5, we prove in V_1 among others the following schemas: $A^0 \lor (A \& \neg A)$, $A \supset (\neg \neg A \supset A)$, $A \& \neg A \& A^0 \supset B$, $A \lor A^0$, $A \lor A^0$.

3. The system V_2

This is the system corresponding to the case in which the law of contradiction is valid but not the law of excluded middle.

Definition. $\neg^* A = df A \supset \neg A$.
The postulates of V_2 are 1-9 of V_1 plus:

10. $0 A \&(A \supset B)\&(A \supset \neg B) \supset \neg A$
11. $0 A \& 0 B \supset^0 (A \supset B)\&(0(A \& B)\&0(A \vee B)$
12. $0 A \supset^0 (\neg A)$
13. $\neg(A \& \neg A)$
14. $\neg^* \neg^* A \supset \neg\neg^* A$

Theorem 3.1. V_1 is a proper subsystem of V_2 and of C_0.

Theorems 1.1-1.4 and 1.6, with obvious modifications, are valid in V_2.

Theorem 3.2. Besides the schemas and rules of Theorem 1.5 and 2.2, we prove in V_2, for example, the following:

$$A \supset \neg \neg A \quad A \& \neg A \supset B \quad \neg(A \supset \neg A) \supset A \& \neg \neg A$$
$$\neg^0(A \supset \neg A) \supset A \equiv^0 A \& \neg \neg A \quad \neg^* \neg^* A \supset \neg A$$
$$\neg A \supset \neg^* A \supset A \quad \text{If } \vdash A, \text{ then } \vdash^0 A$$

4. Duality between V_2 and C_1

Let us consider the system C_1 axiomatized as follows: the postulates of LPC (classical positive logic) plus:

$$\begin{align*}
\text{I)} & \quad B^0 \& (A \supset B)\&(A \supset \neg B) \supset \neg A \\
\text{II)} & \quad A^0 \& B^0 \&(A \supset B)\&(A \& B)\&0(A \vee B)^0 \\
\text{III)} & \quad \neg A \supset A \\
\text{IV)} & \quad A \vee \neg A
\end{align*}$$

(of course, Peirce’s Law is not independent of the other axioms).

To establish a certain kind of duality between V_2 and C_1, we change the axiomatics of V_2 to the equivalent one: the postulates of LPC, plus:

$$\begin{align*}
\text{I’)} & \quad \neg A \supset (A \supset B)\&(A \supset \neg B)\& B^0 \\
\text{II’)} & \quad 0 A \& 0 B \supset^0 (A \supset B)\& 0(A \& B)\& 0(A \vee B) \\
\text{III’)} & \quad A \supset \neg \neg A \\
\text{IV’)} & \quad \neg (A \& \neg A)
\end{align*}$$

Now we say that I and I’, as well as III and III’, are “duals” because one is obtained from the other by reversing the order of the respective implication; and we say that II and II’, as well as IV and IV’, are “duals” because one is obtained from the other by interchanging $\neg (A \& \neg A)$ and
Some Remarks on the Logic of Vagueness

A ∨ ¬A. But, in spite of this fact, it seems that it is impossible to obtain a general theorem of duality between V_2 and C_1. As an example of this conjecture one may observe the following:

\[\vdash_{C_1} \neg(A \& \neg B) \supset \neg A \lor B \quad \nvdash_{V_2} \neg A \lor B \supset \neg(A \& \neg B) \]
\[\nvdash_{C_1} A \supset \neg(A \supset \neg A) \quad \vdash_{V_2} \neg(A \supset \neg A) \supset A. \]

Nonetheless, some other examples of “duality” between V_2 and C_1 may be seen in the following table:

<table>
<thead>
<tr>
<th>V_2</th>
<th>C_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬A ⊃ ¬¬A</td>
<td>¬A ⊃ ¬¬¬A</td>
</tr>
<tr>
<td>¬¬A ⊃ ¬¬¬¬A</td>
<td>¬¬¬¬A ⊃ ¬¬A</td>
</tr>
<tr>
<td>A⁰ ⊃ (A ⊃ ¬¬A)</td>
<td>A⁰ ⊃ (¬¬¬¬A ⊃ A)</td>
</tr>
<tr>
<td>¬¬¬¬A ⊃ A⁰</td>
<td>¬¬¬¬¬A ⊃ A⁰</td>
</tr>
<tr>
<td>A⁰ ⊃ (¬A)⁰</td>
<td>(A & ¬A)⁰</td>
</tr>
<tr>
<td>(A & ¬A)⁰</td>
<td>(A⁰)⁰</td>
</tr>
</tbody>
</table>

References

Departamento de Matemática
Universidade Estadual de Campinas
13100 Campinas, Brazil
and

Centro de Lógica, Epistemologia e História da Ciência
Universidade Estadual de Campinas
12100 Campinas, Brazil