A NOTE ON INCOMPLETENESS OF MODAL LOGICS WITH RESPECT TO NEIGHBOURHOOD SEMANTICS

This is a summary of a lecture read at the Seminar of the Department of Mathematical Logic held by Professor Jerzy Kotas, Institute of Mathematics, N. Copernicus University, Toruń, June 1978.

§0. By a modal logic we understand a proper subset of the set of propositional modal formulae that contains all classical tautologies, the axiom $\square(p \rightarrow q) \rightarrow (\square p \rightarrow \square q)$ and closed under modus ponens, substitution and necessitation. In our considerations all neighbourhood frames are normal, i.e. such that neighbourhoods of each point constitute a filter.

For a neighbourhood frame $F = (U, N)$, by F^+ we denote the algebra $(P(U), \cup, \cap, \neg, \square_N, 0, 1)$; where $(P(U), \cup, \cap, \neg, 0, 1)$ is the well known Boolean algebra and \square_N is a unary operation defined as follows: $\square_N(S) = \{x \in U | S \in N(x)\}$ for every $S \subseteq U$. We know that $E(F) = E(F^+)$, where $E(F)$ ($E(F^+)$) is the set of all formulae which are valid in F (F^+). Following Fine [3], for a modal logic L, we put $\delta^*(L) = \text{card}\{L' | L' \text{ is a modal logic such that for every neighbourhood frame } F, L' \subseteq E(F) \text{ iff } L \subseteq E(F)\}$. Our aim is to prove the following theorem which is a counterpart of Blok’s one (see [1], also [2]).

Theorem 1. For any modal logic L:

1) if $\square p \rightarrow \Diamond p \in L$ and $\square^np \rightarrow \square^{n+1}p \in L$ for some $n \geq 0$, then $\delta^*(L) = 2^{\aleph_0}$
2) if $p \rightarrow p \in L$, then $\delta^*(L) = 2^{\aleph_0}$.

§1. In order to prove the first part of Theorem 1 let us take into consideration the formulae
\(\alpha_{n,k} = (p \land \Diamond^{2^n}q) \rightarrow (\Diamond^{n}q \lor \Diamond^{2^n}(q \land \Diamond^{k(n+1)p})) ; \ n \geq 1, k \geq 1 \)

\(\beta_n = (\Box^n p \land \sim \Box^{n+1}p \land \sim \Box^{2n+1}p) \rightarrow \Diamond^n (\Box^{2n+1}p \land \sim \Box^{2n+2}p \land \sim \Box^{3n+2}p), \ n \geq 1 \)

\(\gamma_n = (\Box^n p \land \sim \Box^{n+1}p \land \sim \Box^{2n+1}p) \rightarrow \sim (\bigwedge_{1 \leq i \leq 2n+4} \Box^n (r \rightarrow \Diamond^n q_i) \land \bigwedge_{1 \leq i \neq j \leq 2n+4} \Box^n \sim (q_i \land q_j)), \ n \geq 1. \)

These formulae can be found in Thomason [5].

Lemma 1. For any \(n \geq 1 \) and every neighbourhood frame \(F \):

if \(\alpha_{n,k}(k \geq 1)\beta_n, \gamma_n \in E(F) \), then

\(\Box^n p \rightarrow (\Box^{n+1}p \lor \Box^{2n+1}p) \in E(F). \)

In the proof the ideas from Gerson [4] are used. Let us recall Blok’s definition of a family of modal algebras \(A_m \) (cf. [1]). \(A_m \) is a modal algebra of finite and cofinite subsets of the set of natural numbers \(N \). The operation \(\Box_m \) in \(A_m \) corresponding to a connective \(\Box \) is defined as follows:

\[
\Box_m = \begin{cases}
\emptyset, & \text{if } M \text{ is finite} \\
[m_{i+1}, \infty), & \text{if } N \neq M \text{ is cofinite and } i = \min\{j|[m_j, \infty) \subseteq M\} \\
N, & \text{if } M = N
\end{cases}
\]

where \(m = (m_i)_{i=1}^{\infty} \) is a sequence of natural numbers satisfying \(m_1 = 3, m_2 = 4, m_{i+1} > m_i \) and \(m_{i+1} - m_i \leq 2 \), for \(i \geq 1 \).

Lemma 2. For each algebra \(A_m \)

\(\alpha_{n,k}, \beta_n, \gamma_n \in E(A_m) \) (\(n \geq 1, k \geq 1 \)).

For any class \(K \) of algebras, \(V(K) \) denotes the smallest variety that contains \(K \), and \(V(K)_{SI} \) is the class of all subdirectly irreducible members of \(V(K) \). The next lemma is an immediate consequence of Theorem 4.4 in Blok [1].

Lemma 3. For every algebra \(A_m \) and natural number \(n \geq 1 \): if \(B \in V(A_m)_{SI} \) and \(\Box^n p \rightarrow (\Box^{n+1}p \lor \Box^{2n+1}p) \in E(B) \), then \(B \cong 2 \).
Lemma 4. For a neighbourhood frame \(F \). Indeed, for them we have (cf. Lemma 1).

\[\gamma = (\Box p \land \sim p) \rightarrow \Box^2(\Box^2 p \land \sim \Box p) \]

\[\alpha = (p \land \Box^4 q) \rightarrow (\Box^{n+1} r \rightarrow \Box^n r) \lor \Box^2 q \lor \Box^4 (q \land \Box^4 p) \]

\[n \geq 0, k \geq 3 \]

\[\beta = (\Box p \land \sim p) \rightarrow \Box^2(\Box^2 p \land \sim \Box p) \]

\[\gamma = (\Box p \land \sim p) \rightarrow (r \land \bigwedge_{1 \leq i \leq 5} \Box^2(r \rightarrow \Box^2 q_i) \land \bigwedge_{1 \leq i \leq 5} \Box^2(q_i \land r) \land \bigwedge_{1 \leq i \neq j \leq 5} (q_i \land q_j)) \]

These formulae will play a similar role to that in the previous section. Indeed, for them we have (cf. Lemma 1).

Corollary 1. Let \(L \) be a modal logic such that \(\Box p \rightarrow \Diamond p \in L \) and for some \(n \geq 1 \) the formulas \(\alpha_n \) (\(k \geq 1 \)), \(\beta_n \) and \(\gamma_n \) are theses of \(L \). Then, for every algebra \(A_m \) and neighbourhood frame \(F \), \(F^+ \in V(K_L \cup \{A_m\}) \) iff \(F^+ \in K_L \).

\[\text{Let us suppose } \Box p \rightarrow \Diamond p \in L \text{ and } \Box^n p \rightarrow \Box^{n+1} p \in L, \text{ for some } n \geq 0. \]

Blok [1] has proved that \(V(K_L \cup \{A_m\}) \neq V(K_L \cup \{A_m\}) \), for every \(m \neq n \). But \(L \) contains also the formulæ \(\alpha_{n+1, k} \) (\(k \geq 1 \)), \(\beta_{n+1} \), and \(\gamma_{n+1} \), and so, by Corollary 1, we receive \(\delta(L) = 2^\aleph_0 \).

§2. Now, similarly, we prove the second part of Theorem 1. Therefore take the following formulae:

\[\alpha_{n,k} = (p \land \Box^4 q) \rightarrow ((\Box^{n+1} r \rightarrow \Box^n r) \lor \Box^2 q \lor \Box^4 (q \land \Box^4 p)) \]

\[n \geq 0, k \geq 3 \]

\[\beta = (\Box p \land \sim p) \rightarrow \Box^2(\Box^2 p \land \sim \Box p) \]

\[\gamma = (\Box p \land \sim p) \rightarrow (r \land \bigwedge_{1 \leq i \leq 5} \Box^2(r \rightarrow \Box^2 q_i) \land \bigwedge_{1 \leq i \leq 5} \Box^2(q_i \land r) \land \bigwedge_{1 \leq i \neq j \leq 5} (q_i \land q_j)) \]

These formulae will play a similar role to that in the previous section. Indeed, for them we have (cf. Lemma 1).

Lemma 4. For a neighbourhood frame \(F \):

if \(\alpha_{n,k} \) (\(n \geq 0, k \geq 3 \)), \(\beta, \gamma \in E(F) \), then \(\Box p \rightarrow p \in E(F) \).

Let \(b_i, i = 1, 2, 3, 4, 5 \), be arbitrary but fixed elements not belonging to the set of natural numbers \(N \), and let \((a_n)_{n=1}^\infty \) be a one-to-one sequence of such elements. For any sequence \(m = (m_i)_{i=1}^\infty \) of natural numbers such that \(m_1 = 2, m_i < m_{i+1} \) and \(m_{i+1} - m_i \leq 2 \) (\(i \geq 1 \)), let us put

\[W_m = N \cup \{b_1, b_2, b_3, b_4, b_5\} \cup \{a_n | n \in m\} \] and

\[R_m = \{(b_i, b_i) | i \in \{1, 2, 3, 4, 5\} \cup \{b_i, b_{i+1}, (b_{i+1}, b_i) | i \in \{1, 2, 3\} \cup \{(b_1, 1) | i \in \{1, 2, 3, 4\} \cup \{(1, b_4), (b_1, b_5), (b_5, b_4), (b_1, b_4), (1, 1)\} \cup \{(n, m) | n < m \} \cup \{(n, m) | n \geq m \} \cup \{(n, m) | n < m \} \cup \{(n, m) | m < n \} \cup \{(n, m) | m = n \} \cup \{(n, m) | m = n \} \cup \{(a_n, n) \cup \{(a_n, a_n) | n \in m \} \cup \{(a_n, a_n) | n \in m \}. \]

Given \((W_m, R_m) \),
let B_m denote the modal algebra of finite and cofinite subsets of W_m in which the operation \Box_m corresponding to the connective \Box is defined with the aid of R_m, i.e. $\Box_m(S) = \{x \in W_m | \forall y (xR_my \Rightarrow y \in S)\}$.

Lemma 5. For each algebra B_m

i) $\alpha, \beta, \gamma \in E(B_m)$ ($n \geq 0, k \geq 3$)

ii) if $B \in V(B_m)_{SI}$ and $\Box p \rightarrow p \in E(B)$, then $B \cong 2$.

Lemma 4 and 5 allow us to obtain the following

Corollary 2. Let L be a modal logic such that $\Box p \rightarrow p \in L$. Then, for every algebras B_m and neighbourhood frame E, $E^+ \in V(K_L \cup \{B_m\})$ iff $E^+ \in K_L$.

Each of the algebras B_m is subdirectly irreducible and $\Box p \rightarrow p \not\in E(B_m)$. Applying the method due to Blok [1] one can prove.

Lemma 6. For a modal logic L:

if $\Box p \rightarrow p \in L$ then $V(K_L \cup \{B_m\}) \neq V(K_L \cup \{B_n\})$ for every $m \neq n$.

Corollary 2 and Lemma 6 yield the second part of Theorem 1.

§3. We say that a modal logic L is complete with respect to neighbourhood semantics iff $L = \bigcap \{E(E^+) | E^+ \in K_L\}$. We can neither prove nor disprove the following statement (comp. Lemma 4.1 [1]): L is complete with respect to neighbourhood semantics iff $K_L = V(\{E^+ \in K_L | E^+ \text{ is subdirectly irreducible}\})$. If it were proved true, then Theorem 1 would follow immediately from Blok [1].

References

Institute of Mathematics

Nicolaus Copernicus University

Toruń, Poland