ON THE DEGREE OF INCOMPLETENESS OF MODAL LOGICS (ABSTRACT)

In the following we will use the well-known correspondence between modal logics and varieties of modal algebras in our investigation of the function which assigns to a modal logic its degree of incompleteness. A modal algebra is an algebra \(A = (A, +, \cdot, ^o, 0, 1) \) where \((a, +, \cdot, 0, 1)\) is a Boolean algebra and \(^o \) is a unary operation satisfying \(1^o = 1 \) and \((x \cdot y)^o = x^o \cdot y^o \); \(^o \) is called a modal operator. A variety of algebras is a class of algebras closed under the operations of forming homomorphic images, subalgebras as and direct products, and if \(K \) is a class of algebras then \(V(K) \) denotes the smallest variety containing \(K \). The variety of modal algebras is denoted by \(M \), the subvariety of \(M \) defined by the equation \(x^o \cdot x = x^o \) by \(MR \) and the subvariety of \(M \) defined by the equation \(x^{o^n} = x^{o^{n-1}} \), \(n \) a natural number, by \(M^n \). Here \(x^{o^0} = x \), \(x^{o^n} = (x^{o^{n-1}})^o \), \(n \) a natural number. We write \(\Lambda(K) \) for the lattice of subvarieties of a variety \(K \). If \(K, K' \) are varieties such that \(K \subseteq K' \) but for no variety \(K'' \) \(K \nsubseteq K'' \nsubseteq K' \) then we say that \(K' \) is a cover of \(K \). The smallest normal modal logic – containing the axiom \(\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q) \) and closed under the inference rules of modus ponens, substitution and necessitation – will be denoted by \(K \); the lattice of modal logics which are extensions of \(K \) by \(\Lambda(K) \). There is an obvious translation which assigns to any modal formula \(\varphi \) an \(M \)-polynomial \(\hat{\varphi} \). The mapping

\[\ast : \Lambda(K) \rightarrow A(M) \]

defined by

\[L \rightarrow L^* = \{ A \in M | A \models \hat{\varphi} = 1, \varphi \in L \} \]

establishes an anti-isomorphism. In particular, \(T^* = MR \) (where \(T \) is the modal logic axiomatized, relative to \(K \), by \(\Box p \rightarrow p \)) and \(SA^* = MR \cap M^2 = \)

Bulletin of the Section of Logic
reedition 2011 [original edition, pp. 167–175]

W. J. Blok
If $F = (W, R)$ is a Kripke frame (i.e., W is a non-empty set and R is a binary relation on W) then F^+ will be used to denote the modal algebra of all subsets of W, the modal operator $^\circ$ being defined by $A^\circ = \{ w \in W | \forall v \in W [(w, v) \in R \Rightarrow v \in A]\}$. A modal algebra isomorphic to one of this kind is called a Kripke algebra. If K is a class of modal algebras then \mathcal{K}_K denotes the subclass of its Kripke algebras. It is a simple matter to verify that for any modal formula φ and Kripke frame F we have $F \models \varphi$ iff $F^+ \models \hat{\varphi} = 1$. In accordance with the usual terminology for modal logics we call a variety $K \subseteq \mathcal{M}$ complete iff $K = \mathcal{V}(K_K)$. Clearly, for any modal logic $L \in \Lambda(K)$, L is complete with respect to the Kripke semantics iff L^* is a complete variety.

Definition. If $K \in \Lambda(M)$, the degree of incompleteness of K, denoted by $\delta(K)$ is

$$|\{K' \in \Lambda(M) | K'_K = K_K\}|.$$

Thus for any $K \in \Lambda(M)$, $1 \leq \delta(K) \leq 2^{2^{20}}$. The definition is nothing but an algebraic reformulation of the notion of degree of incompleteness of a modal logic, as introduced in [6] by K. Fine. He presented an example (as S. K. Thomason did in [9]) of a modal logic having degree of incompleteness ≥ 2. We showed in [2] that every modal logic satisfying certain mild assumptions has degree of incompleteness 2^{20}. We will now describe the behavior of the function δ in full detail.

For this we need the notion of splitting algebra, dealt with extensively in [4].

Definition. Let $K \subseteq \mathcal{M}$ be a variety. A finite subdirectly irreducible algebra $A \in K$ is called a splitting algebra in K if there exists a variety $K_A \in \Lambda(K)$ such that for every $K' \in \Lambda(K)$ either $A \in K'$ or $K' \subseteq K_A$. If A is a splitting algebra then the variety K_A is called a splitting variety and is denoted by K/K_A.

It is easy to see that if a variety $K \subseteq \mathcal{M}$ is generated by its finite members i.e., if the corresponding modal logic has the finite model property then every splitting of $\Lambda(K)$ is determined by some splitting algebra. Each splitting variety K/K_A is definable, relative to K, by a single equation $\varepsilon_A = 1$. In [4] we showed that in MR^2 every finite subdirectly irreducible algebra or splitting in MR^2; this result generalizes to the setting of \mathcal{M}^ω.

MR^2.

for any natural number n, as shown by W. Rautenberg [8]. Some examples in [3] showed that in MR not every finite subdirectly irreducible algebra is splitting.

Theorem 1. The only splitting algebra in MR is the two element modal algebra $2 = \{0, 1\}$, with $0^0 = 0$, $1^0 = 1$.

Theorem 2. An algebra $A \in M$ is splitting in M iff A is finite, subdirectly irreducible and satisfies $0^{n} = 1$ for some natural number n.

The smallest splitting algebra in M is the two element modal algebra $2^+ = \{0, 1\}$, with $0^0 = 1$, $1^0 = 1$. The variety $M/2^+$ is defined by the equation $0^n = 0$ and corresponds with the modal logic D axiomatized relative to K by $\Box T$. The variety $M/2^+$ is the smallest splitting variety, and apparently does not contain any algebras which are splitting in M: 2 is the only splitting algebra in $M/2^+$. Note also that through the class of splitting algebra is rather restricted, it generates M.

Lemma 3. Let $K \subseteq M$ be a variety satisfying the equation $0^n = 1$ for some natural number n. Then the finitely generated algebras in K are finite; i.e., K is locally finite.

Using this lemma we obtain:

Theorem 4. Let $\{A_i|i \in I\}$ be a set of splitting algebras in M. Then $\bigcap_{i \in I} M/A_i$ is generated by its finite members.

It follows that varieties of this form are complete.

Theorem 5. Let $\{A_i|i \in I\}$ be a set of splitting algebras. Then $\delta(\bigcap_{i \in I} M/A_i) = 1$.

Proof. Let $K = \bigcap_{i \in I} M/A_i$, $K' \in A(M)$ such that $K_K = K'_K$. Since K is complete, $K' \supseteq K$. Since A_i is finite, $i \in I$, it is a Kripke algebra, hence $A_i \not\subseteq K'$, $i \in I$, thus $K' \subseteq \bigcap_{i \in I} M/A_i = K$.

Corollary 6. There are 2^{\aleph_0} varieties of modal algebras having degree of incompleteness 1.
Apparently our conjecture in [1] and [2] that every modal logic which is a proper extension of K has degree of incompleteness 2^\aleph_0 is false. We will now proceed to show, however, that the varieties mentioned in Theorem 5 are the only ones having degree of incompleteness $< 2^\aleph_0$.

A variety is called *tabular* if it is generated by a finite algebra. In [4] it was shown that in MR^2 every tabular variety is covered by tabular varieties only, and only by finitely many.

Theorem 7. In MR^3 the variety $V(2)$ is covered by 2^{\aleph_0} varieties.

In terms of modal logics this theorem claims that there are 2^{\aleph_0} modal logics containing the axioms $\square p \rightarrow p$ and $\square^2 p \rightarrow \square^3 p$, which are immediate predecessors of classical logic, axiomatized by $\square p \leftrightarrow p$. In particular, these logics need not be tabular. A variety is called *pretabular* if all its proper subvarieties are tabular. A well-known result, proved by several authors (see [7], [5]), states that MR^2 contains only five pretabular varieties.

Corollary 8. MR^3 contains 2^{\aleph_0} pretabular varieties.

Note that this result and the previous one are in contradiction with the results claimed in [8], section 3.

Using the varieties produced in the proof of Theorem 7 we are able to prove:

Theorem 9. Let $K \in \mathcal{A}(M)$ be a non-trivial variety and A a finite subdirectly irreducible algebra which is not splitting, such that $A \not\in K$ but such that all other homomorphic images of subalgebras of A do belong to K. Then $\delta(K) = 2^{\aleph_0}$ and K has 2^{\aleph_0} covers in $\mathcal{A}(M)$.

Using Theorem 9 and Theorem 5 we infer:

Corollary 10. If $K \in \mathcal{A}(M)$ is such that K is not an intersection of splitting varieties, then $\delta(K) = 2^{\aleph_0}$.

Thus, if $K \in \mathcal{A}(M)$, then $\delta(K) = 1$ if K is an intersection of splitting varieties, otherwise $\delta(K) = 2^{\aleph_0}$. The proofs of theorems provide somewhat sharper results. In order to formulate them the following definition is useful.

Definition. For $K \in \mathcal{A}(M)$, $K' \in \mathcal{A}(K)$ let

$$\delta_K(K') = |\{K'' \in \mathcal{A}(K) | K''_K = K'_K\}|.$$
It follows from the constructions that

Corollary 11.

(i) \(\delta_{M/2^+}(K) = 2^{\aleph_0} \), for every \(K \in \Lambda(M/2^+) \), such that \(K \) is nontrivial and \(K \neq M/2^+ \).

(ii) \(\delta_{MR}(K) = 2^{\aleph_0} \), for every \(K \in \Lambda(MR) \) such that \(K \) is nontrivial and \(K \neq MR \).

Hence, every proper extension of the modal logic \(T \) has degree of incompleteness (relative to \(T \)) \(2^{\aleph_0} \). Since in \(M^n \), \(n \) a natural number, every finite subdirectly irreducible algebra is splitting, and hence the \(M^n \) contain many varieties which are intersections of splitting varieties, the function \(\delta_{M^n} \) assumes the value 1 very often. Much more we do not know about the \(\delta_{M^n} \), \(n \geq 3 \). For example, if \(K \in \Lambda(MR^n) \) is non-trivial and tabular, what is \(\delta_{MR^n}(K) \), \(n \geq 3 \)?

A bit more can be said in case \(n = 2 \). Indeed, \(\delta_{MR^2}(K) = 1 \), for every tabular variety \(K \), and more generally, for every variety \(K \subseteq MR^2/F_n^+ \), where \(F_n = \{0,1,\ldots,n-1\}, \leq \). However, as Fine’s example shows [6], there exists a \(K \in \Lambda(MR^2) \) such that \(\delta_{MR^2}(K) \geq 2 \).

As a byproduct we obtain interesting results on the covering relation in \(\Lambda(M) \).

Definition. If \(K \in \Lambda(M) \), \(K' \subseteq \Lambda(K) \), let \(c_K(K') = |\{ K'' \in \Lambda(K) | K'' \text{ covers } K' \}| \). We write \(c(K) \) for \(c_M(K) \).

If \(K \in \Lambda(M) \) and \(K' \in \Lambda(K) \), \(K' \neq K \), are such that \(K \) is generated by its finite members or \(K' \) is finitely axiomatizable then \(c_K(K') \geq 1 \). In [3] we gave examples of varieties \(K, K' \) such that \(K' \not\subseteq K \) and \(c_K(K') = 0 \).

Theorem 13.

(i) Suppose \(K \in \Lambda(M) \), \(K \neq M \), is an intersection of splitting varieties.

If \(m \) is the smallest cardinal number such that \(K = \bigcap_{i \in I} M/A_i \), \(|I| = m \)

\(m \), for a set of splitting varieties \(\{ M/A_i | i \in I \} \), then \(c(K) = m \).

Hence \(1 \leq m \leq \aleph_0 \) in this case.

(ii) If not, then \(c(K) = 2^{\aleph_0} \) if \(K \) is non-trivial; \(c(K) = 2 \) if \(K \) is trivial.
Theorem 14.

(i) For every $K \in \Lambda(M/2^+)$, K nontrivial and $K \neq M/2^+$, $c_{M/2^+}(K) = 2^{ℵ_0}$.

(ii) For every $K \in \Lambda(MR)$, K nontrivial, $K \neq MR$, $c_{MR}(K) = 2^{ℵ_0}$.

Corollary 15. For $K \in \Lambda(M)$, K non-trivial, $K \neq M$, $δ(K) = 1$ iff $c(K) \leq ℵ_0$ and $δ(K) = 2^{ℵ_0}$ iff $c(K) = 2^{ℵ_0}$.

References

Mathematisch Instituut
Roetersstraat 15
Amsterdam
The Netherlands