Hiroakira Ono

ON SOME INTUITIONISTIC MODAL LOGICS

This is an abstract of my paper On some intuitionistic modal logics submitted to Publ. RIMS, Kyoto Univ.

Some modal logics based on logics weaker than the classical logic have been studied by Fitch [4], Prior [7], Bull [1], [2], [3], Prawitz [6] etc. Here we treat modal logics based on the intuitionistic propositional logic, which call intuitionistic modal logics (abbreviated as IML's).

Let H be the intuitionistic propositional logic formulated in the Hilbert-style. The rules of inference of H are modus ponens and the rule of substitution. The IML L_0 is obtained from H by adding the following three axioms,

\[\Box p \supset p, \]
\[p \supset \Box \Box p, \]
\[(p \supset q) \supset (\Box p \supset \Box q), \]

and the rule of necessitation, i.e., from A infer $\Box A$. It is clear that L_0 with the law of excluded middle becomes $S4$. Now, consider the following axioms.

\[A_1 : \neg \Box p \supset \Box \neg \Box p, \]
\[A_2 : (\Box p \supset \Box q) \supset \Box (\Box p \supset \Box q), \]
\[A_3 : \Box (\Box p \lor q) \supset (\Box p \lor \Box q), \]
\[A_4 : \Box p \lor \Box \neg \Box p. \]

The logic L_0 with the axiom A_i is denoted by L_i for $i = 1, 2, 3, 4$. The logic L_3 with A_1 (or A_2) is denoted by L_{31} (or L_{32}). It is easy to see that $S4$ with any A_i is equal to $S5$.

We identity a logic L with the set of formulas provable in L.

Theorem 1.

(i) For $J = 1, 2, 3, 31, 32$, $L_0 \subsetneq L_J \subsetneq L_4$.
(ii) $L_1 \subsetneq L_2 \subsetneq L_{32}$ and $L_3 \subsetneq L_{31} \subsetneq L_{32}$.

For IML’s, we introduce a kind of Kripke models, which we call I models. A triple (M, \leq, R) is an I frame, if

(i) M is a nonempty set with a partial order \leq,
(ii) R is a reflexive and transitive relation on M such that $x \leq y$ implies xRy each $x, y \in M$.

For any formula A and an element $a \in M$, a valuation $W(A, a) \in \{t, f\}$ is defined in the same way as a valuation on a Kripke model for the intuitionistic propositional logic. For instance,

$W(A \supset B, a) = T$ if and only if for any b such that $a \leq b, W(A, b) = f$ or $W(B, b) = t$.

Moreover, we claim that $W(\Box A, a) = t$ if and only if for any b such that $a \sim R b W(A, b) = t$.

A quadruple (M, \leq, R, W) is an I model if (M, \leq, R) is an I frame and W is a valuation on it. A formula A is valid in an I frame (M, \leq, R) if $W(A, a) = t$ for any valuation W on (M, \leq, R) and any element $a \in M$.

For any binary relation R, we write $x \sim_R y$ if xRy and yRx hold. In what follows we omit the subscript letter R. Now define I frames of type J for $J = 0, 1, 2, 3, 31, 32, 4$ as follows.

(0) Any I frame is of type 0.
(1) An I frame (M, \leq, R) is of type 1 when for each $x, y \in M$, if xRy then there is an element y' in M such that $x \leq y'$ and yRy'.
(2) An I frame (M, \leq, R) is type 2 when for each $x, y \in M$, if xRy then there is an element y' in M such that $x \leq y'$ and $y \sim y'$.
(3) An I frame (M, \leq, R) is of type 3 when for each $x, y \in M$, if xRy then there is an element x' in M such that $x \sim x'$ and $x' \leq y$.
(3i) An I frame is of type 3i if it is both of type 3 and of type i, for $i = 1, 2$.
(4) An I frame (M, \leq, R) is of type 4 if R is symmetric.
Theorem 2. A formula is provable in L_J if and only if it is valid in any I frame of type J, for $J = 0, 1, 2, 3, 31, 32, 4$.

An IML L_J has the finite model property if for any formula A not provable in L_J there is a finite I frame of type J in which A is not valid.

Theorem 3. For $J = 0, 2, 3, 32, 4$, L_J has the finite model property.

In [5], another kind of Kripke models is introduced and discussed.

References