NOTES ON THE RASIOWA – SIKORSKI LEMMA

This paper aims at formulating a condition necessary and sufficient for the existing of a prime filter preserving enumerable infinite joins and meet in a distributive lattice.

First we prove a simple but very useful Lemma 1. Every lattice \(A = (A, \cup, \cap) \) is distributive if and only if \(a \leq b \) provided that there exists \(c \in A \) such that \(c \neq a, c \neq b \) and \(a \leq b \cup c \) and \(a \cap c \leq b \).

Suppose that \(A \) is a distributive lattice and \(a \leq b \cup c, a \cap c \leq b \) for some \(c \in A, c \neq a, c \neq b \). Then

\[
 a = a \cap a \leq a \cap (b \cup c) = (a \cap b) \cup (a \cap c) \leq (a \cap b) \cup b = b
\]

Other direction, suppose that a lattice \(A \) is not distributive and let \(A \) be the form

\[
 a \bullet \quad c \bullet \quad b
\]

It is obvious that \(a \leq b \cup c \) and \(a \cap c \leq b \) but \(a \leq b \) does not hold.

Corollary. For every lattice \(A = (A, \cup, \cap) \) the next two conditions are equivalent:
(i) \(a \leq b \) if and only if there exists \(c \in A \) such that \(c \neq a, c \neq b, a \leq b \cup c \) and \(a \cap c \leq b \),

(ii) \(A \) is a distributive lattice.

It is well known that

Lemma 2. In every lattice \(A \), if the infinite join and meets concerned exist; then

\[
\bigcup_{t \in T} (a_t \cap b) \leq b \cap \bigcup_{t \in T} a_t,
\]

\[
\bigcap_{t \in T} b_t \cup a \leq \bigcap_{t \in T} (b_t \cup a).
\]

Let \(A = (A, \cup, \cap) \) be a lattice and let for every \(n \in \omega \), \(A_{2n} \subset A \) and \(B_{2n+1} \subset A \). We denote

\[
a_{2n} = \bigcup_{a \in A_{2n}} a \quad \quad \quad b_{2n+1} = \bigcap_{b \in B_{2n+1}} b
\]

A prime filter \(\nabla \) is said to be a \(Q \)-filter provided that

(f1) for every \(n \in \omega \) if \(a_{2n} \in \nabla \) then \(A_{2n} \cap \nabla \neq \emptyset \),

(f2) for every \(n \in \omega \) if \(B_{2n+1} \subset \nabla \) then \(b_{2n+1} \in \nabla \).

Theorem. Let \(A = (A, \cup, \cap) \) be a distributive lattice and let for every \(n \in \omega \), \(a_{2n} \) and \(b_{2n+1} \) exist. Suppose, that for some \(x, y \) the inequality \(x \leq y \) does not hold.

Then there exists a \(Q \)-filter \(\nabla \) such that \(x \in \nabla \) and \(y \notin \nabla \) if and only if for every \(n \in \omega \), \(a', b' \in A \)

\[
(\cap, \cup) \bigcap_{b \in B_{2n+1}} (a' \cup b) \leq a' \cup \bigcap_{b \in B_{2n+1}} b,
\]

\[
(\cup, \cap) b' \cap \bigcup_{a \in A_{2n}} a \leq \bigcup_{a \in A_{2n}} (b' \cap a).
\]

Proof. Suppose that there exist \(n_0 \in \omega \) such that

\[
\bigcap_{b \in B_{2n_0+1}} (a' \cup b) \leq a' \cup \bigcap_{b \in B_{2n_0+1}} b
\]

does not hold. Then by our assumption there exists a \(Q \)-filter \(\nabla \) such that \(\bigcap_{b \in B_{2n_0+1}} (a' \cup b) \in \nabla \) and \((a' \cup \bigcap_{b \in B_{2n_0+1}} b) \notin \nabla \), for some fixed \(n_0 \in \omega \). Hence \(\nabla \) is a \(Q \)-filter we infer that for every \(b \in B_{2n_0+1}, b \in \nabla \) or \(a' \in \nabla \) and \(a' \notin \nabla \) and there exists \(b'_0 \in B_{2n_0+1} \) such that \(b'_0 \notin \nabla \). But this is a contradiction.
In a similar way we prove the condition \((\bigcup, \cap) \). If for some \(n_0 \in \omega \)

\[
b' \cap \bigcup_{a \in A_{2n_0}} a \subseteq \bigcup_{a \in A_{2n_0}} (b' \cap a)
\]
does not hold, then there exists a \(Q \)-filter \(\nabla \) such that

\[
b' \cap \bigcup_{a \in A_{2n_0}} a \in \nabla \text{ and } \bigcup_{a \in A_{2n_0}} (b' \cap a) \notin \nabla.
\]

Thus

\[
b' \in \nabla \land \exists a \in A_{2n_0} \ a \in \nabla \land \forall a \in A_{2n_0} \sim (b' \in \nabla \land a \in \nabla)
\]

but it is a contradiction which proves necessity.

Other direction. Suppose that for some \(x, y, x \leq y \) does not hold and the conditions \((\bigcap, \bigcup) \) and \((\bigcup, \cap) \) are satisfied.

Now we will construct two sequences \((\alpha_n)_{n \in \omega}\) and \((\beta_n)_{n \in \omega}\) of the elements of \(A \) such that:

(i) \(\alpha_0 = y \quad \beta_0 = x \),
(ii) \(\alpha_{n-1} \leq \alpha_n \) and \(\beta_{n-1} \geq \beta_n \) for \(n > 0 \),
(iii) \(\forall n \in \omega (\beta_{2n+1} \leq b_{2n+1} \lor \exists a \in B_{2n+1} b \leq \alpha_{n+1}) \),
\(\forall n \in \omega (\exists a \in A_{2n} \beta_{2n} \leq a \lor a_{2n} \leq \alpha_{2n}) \).
(iv) for every \(n \in \omega \) the relation \(\beta_n \leq \alpha_n \) does not hold.

Suppose that for \(k \in \omega \) \(\alpha_1, \ldots, \alpha_{2k} \) and \(\beta_1, \ldots, \beta_{2k} \) are constructed such that \((ii) \) – \((iv) \) are fulfilled. On account of \((iv) \) we have that the relation \(\beta_{2k} \leq \alpha_{2k} \) does not hold. By Lemma 1 we have that for every \(c \in A \), the relations

\[
\beta_{2k} \leq \alpha_{2k} \cup c \text{ or } \beta_{2k} \cap c \leq \alpha_{2k}
\]
do not hold.

Putting \(c = b_{2k+1} \) we obtain that \(\beta_{2k} \leq \alpha_{2k} \cup b_{2k+1} \) does not hold or \(\beta_{2k} \cap b_{2k+1} \leq \alpha_{2k} \) does not hold.

Consider the first inequality. We have that

\[
\sim (\beta_{2k} \leq \alpha_{2k} \cup \bigcap_{b \in B_{2k+1}} b).
\]

By the condition \((\bigcap, \bigcup) \) we infer that
\[\sim (\beta_{2k} \leq \bigcap_{b \in B_{2k+1}} (\alpha_{2k} \cup b)), \]
i.e.

\[\exists b \in B_{2k+1} \sim (\beta_{2k} \leq \alpha_{2k} \cup b). \]

Thus we have

\[(\ast) \exists b \in B_{2k+1} \sim (\beta_{2k} \leq \alpha_{2k} \cup b) \text{ or } \sim (\beta_{2k} \cap b_{2k+1} \leq \alpha_{2k}). \]

Now if the first condition (\ast) is satisfied we put

\[\alpha_{2k+1} = \alpha_{2k} \cup b \text{ and } \beta_{2k+1} = \beta_{2k}. \]

If the second condition (\ast) takes place we put

\[\beta_{2k+1} = \beta_{2k} \cap b_{2k+1} \text{ and } \alpha_{2k+1} = \alpha_{2k}. \]

It is not difficult to check that so defined \(\alpha_{2k+1} \) and \(\beta_{2k+1} \) satisfy (ii) – (iv).

Having \(\alpha_{2k+1} \) and \(\beta_{2k+1} \) we define the \(\alpha_{2k+2} \) and \(\beta_{2k+2} \) in a similar way. By (iv) we have \(\beta_{2k+1} \leq \alpha_{2k+1} \) does not hold, i.e. that for every \(c \in A \), the relations

\[\beta_{2k+1} \leq \alpha_{2k+1} \cup c \text{ or } \beta_{2k+1} \cap c \leq \alpha_{2k+1} \]
do not hold.

Putting \(c = a_{2k+2} \) we have that

\[\sim (\beta_{2k+1} \leq \alpha_{2k+1} \cup a_{2k+2}) \text{ or } \exists a \in A_{2k+2} \sim (\beta_{2k+1} \cap a \leq \alpha_{2k+1}) \]

We define

\[\beta_{2k+2} = \beta_{2k+1} \text{ and } \alpha_{2k+2} = \alpha_{2k+1} \cup a_{2k+2} \]
or

\[\beta_{2k+2} = \beta_{2k+1} \cap a \text{ and } \alpha_{2k+2} = \alpha_{2k+1} \]

In both cases \(\alpha_{2k+2} \) and \(\beta_{2k+2} \) satisfied (ii) – (iv).

In this way we defined the sequences \((\alpha_n)_{n \in \omega} \) and \((\beta_n)_{n \in \omega} \). Let \(I \) be the ideal generated by the sequence \((\alpha_n)_{n \in \omega} \) and \(F \) be the filter generated by the sequence \((\beta_n)_{n \in \omega} \). By (iv) \(I \) and \(F \) are disjoint and

\[(v) \forall n \in \omega (b_{2n+1} \in F \lor \exists b \in B_{2n+1} \ b \in I), \]

\[(vi) \forall n \in \omega (a_{2n} \in I \lor \exists a \in A_{2n} \ a \in F). \]

It is well known that in a distributive lattice, every filter can be separated from an ideal, disjoint from it, by a prime filter. Let \(\nabla \) be a prime filter
containing F such that ∇ is disjoint from I. It is obvious that $x \in \nabla$ and $y \notin \nabla$. By (v) and (vi) ∇ is the required Q-filter, which completes the proof of the theorem.

In the same way we can prove a condition necessary and sufficient for the existing of a prime ideal preserving enumerable infinite joins and meets in a distributive lattice.

Institute of Mathematics
Warsaw University