A CHARACTERIZATION OF FRAGMENTS OF THE INTUITIONISTIC PROPOSITIONAL LOGIC

We shall use the symbols: \rightarrow, \leftrightarrow, \land, \lor, \neg as the well-known connectives (implication, equivalence, conjunction, disjunction, negation). For every set of connectives $\Psi \subseteq \{\rightarrow, \leftrightarrow, \land, \lor, \neg\}$ by F_Ψ we mean the set of formulas built up by means of propositional variables from an infinite set V and the connectives from Ψ (we shall write F instead of operation C in F_Ψ is called Ψ-consequence (see [1]) iff the following conditions hold for every $X \subseteq F_\Psi$, $\alpha, \beta \in F_\Psi$:

1. (\rightarrow) if $\rightarrow \in \Psi$ then $C(X \cup \{\beta\}) \subseteq C(X \cup \{\alpha\})$ iff $\alpha \rightarrow \beta \in C(X)$,
2. (\leftrightarrow) if $\leftrightarrow \in \Psi$ then $C(X \cup \{\beta\}) = C(X \cup \{\alpha\})$ iff $\alpha \leftrightarrow \beta \in C(X)$,
3. (\land) if $\land \in \Psi$ then $C(\{\alpha, \beta\}) = C(\{\alpha \land \beta\})$,
4. (\lor) if $\lor \in \Psi$ then $C(X \cup \{\alpha\}) \cap C(X \cup \{\beta\}) = C(X \cup \{\alpha \lor \beta\})$,
5. (\neg) if $\neg \in \Psi$ then $C(X \cup \{\alpha\}) = F_\Psi$ iff $\neg \alpha \in C(X)$.

Let Cn_Ψ denotes the consequence operation in F determined by the theorems of the intuitionistic propositional logic and the detachment rule for the implication connective \rightarrow. Putting $Cn_\Psi(X) = F_\Psi \cap Cn(X)$ for every $X \subseteq F_\Psi$ one defines the consequence operation Cn_Ψ in F_Ψ (obviously $Cn = Cn_{\{\rightarrow, \leftrightarrow, \land, \lor, \neg\}}$). Grzegorczyk [1] proved that the intuitionistic consequence operation Cn can be characterized as the smallest $\{\rightarrow, \leftrightarrow, \land, \lor, \neg\}$-consequence. We have the following generalization of Grzegorczyk’s results:

Theorem. For every $\Psi \subseteq \{\rightarrow, \leftrightarrow, \land, \lor, \neg\}$, the consequence operation Cn_Ψ is the smallest Ψ-consequence.

The fact above can be viewed as a kind of separable characterization of fragments of the intuitionistic propositional logic (comp. [2]). We are
informed that a similar result was achieved independently by S. J. Surma (unpublished).

References

Department of Logic
Jagiellonian University
Cracow