A CRITERION OF FUNCTIONAL COMPLETENESS FOR B^3

It is an abstract of the paper which will appear in Studia Logica, vol. 33.

The study of the class of the functions B^3 corresponding to D. A. Bochvar’s three-valued logic [1] is subject of the present paper. In [2] V. I. Shestakov noticed that B^3 can be embedded in the class of the functions corresponding to Łukasiewicz logic L_3. In [3], [4] the author examined normal forms for the functions belonging to B^3 and the axiomatized algebra corresponding to B^3. We make use here of some results and symbolism from [3].

Following A. V. Kuznecov we consider the closure operation $[\]$ determined on the subsets of the set B^3. Let $K \subseteq B^3$. Then we call $[K]$ the closure of the set K. $[K]$ comprises all superpositions ([5]) of functions belonging to K. The set of functions K is called closed if $[K] = K$; the set of functions $K \subseteq B^3$ is called pre-complete in B^3 provided that $[K] \neq B^3$ and for any function $F \in B^3$ such that $F \notin K$, $[K \cup \{F\}] = B^3$; a set K is said to be functionally complete in B^3 if $[K] = B^3$.

Let 0, 1, 2 be the logical values of the logic B_3 (0 = falsehood). By $\sim x_1$, $x_1 \cap x_2$, $x_1 \cup x_2$ we denote the functions called: internal negation, internal conjunction, and internal disjunction, respectively [1,3]. Their truth-tables are as follows:

<table>
<thead>
<tr>
<th>$x_1 \cap x_2$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>\sim</th>
<th>$x_1 \cup x_2$</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Let us consider now the function \(J_\alpha x = \begin{cases} 0, & \text{when } x \neq \alpha \\ 2, & \text{when } x = \alpha \end{cases} \) where \(\alpha \in \{0, 1, 2\} \). Let us introduce the following functions of \([1]\):
\(~x =_{df} J_0 x, \downarrow x =_{df} J_1 x, \vdash x =_{df} J_2 x\). The functions \(\sim x, \uparrow x, x_1 \cap x_2 \) constitute a basis for \(B^3 \) [1].

Let \(F \) be any function from \(B^3 \).

Then \(F(x_1, \ldots, x_n) = J_{x_1} \cup \ldots \cup J_{x_k} \uparrow F(x_1, \ldots, x_n) \) where \(0 \leq i_k \leq n \), and \(J_{x_j} =_{df} x_j \cap \sim x_j \) (see [3]).

Let us notice that \(\vdash F \) may be presented in the following way: \(\vdash F = G_F \cap K_F \) where \(G_F \) is the part of \(J \)-perfect normal form of \(F \) not containing the occurrences of \(\downarrow x_j \), and \(H_F \) is the part of \(J \)-perfect normal form of \(F \) every conjunctive member of which contains one occurrence of \(\downarrow x_j \) at most.

We denote the set of all functions \(F \in B^3 \) such that \(G_F = 0 \) and \(H_F \neq 0 \) by \(B^3_G \).

By \(G_F \), we denote a function homomorphic to the function \(G_F \).

The following 11 sets of functions are pre-complete in \(B^3 \).

1-5. Let \(B^3_x \), where \(x \) is \(T_0, T_2, S, L, \) or \(M \) be the set of functions \(F \in B^3 \) such that \(G_F \) belongs to \(T_0, T_2, S, L \) or \(M \), respectively, (where \(T_0, T_2, S, L, M \) are pre-complete sets of two-valued functions [6] preserving constant 0, constant 2, self-dual, linear, and monotonic).

6. \(B^3_n = \{ F : \text{there exists } x_i \text{ such that } F(x_1, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) = 1 \} \)

7. Let us introduce the following notation:

\(X_F = \text{the set of all those variables } x_j \text{ of the function } F \in B^3_n \text{ such that } F(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 1 \).

Let us take into consideration now those functions \(F \in B^3_{in,imp} \) such that \(G_F = V_F \cap K_F \), where \(V_F = 2 \), and \(K_F \) such that \(K^+_F \neq 0 \) and \(K^-_F \neq 2 \) and \(X_F \cap X_K \neq \emptyset \) and \(X_K \subseteq X_F \).
Let us put:
\[B^3_Q = \{ F^j : F^j \in B^3_{\text{in,imp}} \text{ and } G^*_F = \text{const} \} \]
\[B^3_H = \{ H : H \in B^3_{\text{ex}} \text{ and } G^*_H = \text{const} \} \]
\[B^3_b = \{ F : F \in B^3_{\text{in,imp}} \text{ and } G_F = V_F \cap K_F \text{ and } K_F \neq 2 \text{ and } X_F \cap X_{V_F} = \emptyset \text{ and } X_{K_F} \subseteq X_F \}. \]
The set \(B^3_\gamma = [B^3_{\text{in,p}} \cup B^3_\theta \cup B^3_H \cup B^3_b] \) is pre-complete in \(B^3 \).

8. Let \(x_j \) and \(\neg x_j \), \(j = 1, 2, \ldots \) be, respectively, the variable and its negation in the sense of two-valued logic. Then \(B^3_{p_k} = [B^3_{\text{ex}} \cup \{ F : F \in B^3_{\text{in}} \text{ and } G^*_F = \text{const} \} \cup \{ F^j : \text{there exists } x_j \text{ such that } F^j = J_{x_j} \cup F^j \text{ and } G^*_F \in \{ x_j, \neg x_j \} \} \) is a pre-complete set in \(B^3 \).

9. \(B^3_{p_0} = [B^3_{\text{ex}} \cup (x_1 \cap x_2) \cup \{ F : F \in B^3_{\text{in}} \text{ and } G^*_F = 0 \} \) is pre-complete in \(B^3 \).

10. \(B^3_G = [B^3_{\text{ex}} \cup (x_1 \cup x_2) \cup \{ F : F \in B^3_{\text{in}} \text{ and } G^*_F = 2 \} \) is pre-complete in \(B^3 \).

11. \(B^3_{\text{in,imp,1}} \) is the set of all those functions \(F \) which are non-properly internal and which are of the form \(F = J_{x_j} \cup F \). The set \(B^3_C = [B^3_{\text{ex}} \cup B^3_{\text{in,imp,1}}] \) is pre-complete in \(B^3 \).

Theorem. A set \(K \subseteq B^3 \) is functionally complete in \(B^3 \) iff \(K \) is not contained in any of the sets \(B^3_{\text{in},T_0}, B^3_{\text{in},T_2}, B^3_{\text{in},L}, B^3_{\text{in},M}, B^3_{\text{in},T_0}, B^3_{\text{in},S}, B^3_{\text{in},L}, B^3_{\text{in},M}, B^3_{\text{in},\neg M}, B^3_{\text{ex},T_0}, B^3_{\text{ex},T_2}, B^3_{\text{ex},L}, B^3_{\text{ex},M}, B^3_{\text{ex},\neg M}, B^3_{\text{ex},T_0}, B^3_{\text{ex},T_2}, B^3_{\text{ex},L}, B^3_{\text{ex},M}, B^3_{\text{ex},\neg M} \), where \(B^3_{\text{ex},T_0} = [\{ \neg x_1 \cap x_2 \}] \), and \(B^3_{\text{ex},T_2} = [\{ x_1 \cap x_2 \}] \).

Remark 1. In [6] V.I Shestakov examined various normal forms of the functions belonging to \(B^3_{\text{ex}} \). It can be proved that: the set of the functions \(N \subseteq B^3 \), is functionally complete in \(B^3 \) iff \(N \) is not contained in the following seven pre-complete sets: \(B^3_{\text{ex},T_0}, B^3_{\text{ex},T_2}, B^3_{\text{ex},L}, B^3_{\text{ex},M}, B^3_{\text{ex},\neg M}, B^3_{\text{ex},T_0}, B^3_{\text{ex},T_2}, B^3_{\text{ex},L}, B^3_{\text{ex},M}, B^3_{\text{ex},\neg M} \), where \(B^3_{\text{ex},T_0} = [\{ \neg x_1 \cap x_2 \}] \), and \(B^3_{\text{ex},T_2} = [\{ x_1 \cap x_2 \}] \).

Remark 2. In [7] S. Hallén considered the three-valued logic \(C \) aiming at a systematic study of “nonsense”. Defined connectives of the logic \(C \) are the functions: \(\neg \downarrow x_1, \neg x_1, x_1 \cap x_2 \). It is easy to see that \(B^3_C \subseteq B^3_{\text{ex}} \), where \(B^3_C = [\{ \neg \downarrow x_1, \neg x_1, x_1 \cap x_2 \}] \).
References

All-Union Institute
of Science and Technical Information,
Moscow